Parisa Rastgoo Oskoui, Mohammad Rezvani, Abbas Kianvash,
Volume 20, Issue 2 (6-2023)
Abstract
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25℃ with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 ℃ . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360℃ and 440℃ respectively. By increasing the heat treatment temperature to higher than 440℃ , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680℃ . By increasing the heat treatment temperature to 840℃ , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440℃ to 680℃ , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840℃ , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
Abstract
The effect of different heat-treatment temperatures on the magnetic, crystallization, and structural properties of 20SiO2.50FeO.30CaO (mol%) glass ceramics was studied. The initial glass was synthesized by the sol-gel method at 25℃ with a precursors to solvent ratio of 1/5. After aging the resulted gel for 24 h at room temperature, it was dried in an electric dryer at 110 ℃ . By heat treatment at different temperatures, different phases such as magnetite, maghemite, and hematite were crystallized in the glass. The maximum stability temperature of magnetite and maghemite were 360℃ and 440℃ respectively. By increasing the heat treatment temperature to higher than 440℃ , the oxidation of maghemite to hematite was occureds. The highest magnetization amount (1.9 emu/g) belonged to sample heat treated at 680℃ . By increasing the heat treatment temperature to 840℃ , the magnetization decreased to 0.8 emu/g, due to the oxidation of maghemite. By increasing the heat treatment temperature from 440℃ to 680℃ , crystalline size of maghemite was increased from 40 to 200 nm. By forther increment of temperature to 840℃ , the size of maghemite crystals decreased to 17nm, due to the oxidation of maghemite to hematite.
Ahad Saeidi, Sara Banijamali, Mojgan Heydari,
Volume 21, Issue 2 (6-2024)
Abstract
This study explores the fabrication, structural analysis, and cytocompatibility of cobalt-doped bioactive glass scaffolds for potential applications in bone tissue engineering. A specific glass composition modified from Hench's original formulation was melted, quenched, and ground to an average particle size of 10 μm. The resulting amorphous powder underwent controlled sintering to form green bodies and was extensively characterized using simultaneous differential thermal analysis (DTA), Raman spectroscopy, and Fourier Transform Infrared analysis (FTIR). After mixing with a resin and a dispersant, the composite was used in digital light processing (DLP) 3D printing to construct scaffolds with interconnected macropores. Thermal post-treatment of 3D printed scaffolds, including debinding (Removing the binder that used for shaping) and sintering, was optimized based on thermogravimetric analysis (TG) and the microstructure was examined using FE-SEM and XRD. In vitro bioactivity was assessed by immersion in simulated body fluid (SBF), while cytocompatibility with MC3T3 cells was evaluated through SEM following a series of ethanol dehydrations. The study validates the fabrication of bioactive glass scaffolds with recognized structural and morphological properties, establishing the effects of cobalt doping on glass behavior and its implications for tissue engineering scaffolds. Results show, Low cobalt levels modify the glass network and reduce its Tg to 529 oC, while higher concentrations enhance the structure in point of its connectivity. XRD results shows all prepared glasses are amorphous nature, and DTA suggests a concentration-dependent Tg relationship. Spectroscopy indicates potential Si-O-Co bonding and effects on SiO2 polymerization. Cobalt's nucleating role promotes crystalline phases, enhancing bioactivity seen in rapid CHA layer formation in SBF, advancing the prospects for bone tissue engineering materials.