Search published articles


Showing 3 results for Thermomechanical Processing

Nosrati F., Zarei Hanzaki A.,
Volume 3, Issue 3 (12-2006)
Abstract

TRIP (TRansformation- lnduced- Plasticity) behavior is a powerful mechanism to improve mechanical properties. The basis of TRIP phenomena is the transformation of retained austenite with optimum characteristics (volume fraction, stability, size and morphology) to martensite during deformation at room temperature. Accordingly, the first requirement to obtain desired TRIP effects is to produce an appropriate microstructure. Thermo mechanical processing is an effective method to control the microstructural evolution thereby mechanical properties in TRIP steels. This work deals with a TRIP steel containing 0.2% C, evaluating the effects of straining before and during ?®a atransformation on its final characteristics, using hot compression tests. The results revealed that straining in the two phase region (dynamic transformation) not only reduces the ferrite grain size more significantly, but also increases the retained austenite volumefraction. Accordingly the final mechanical properties were also improved.
Behzad Pourghasemi, Vahid Abouei, Omid Bayat, Banafsheh Karbakhsh Ravari,
Volume 19, Issue 3 (9-2022)
Abstract

 
It has long been thought-provoking and challenging as well for researchers to design and produce a special low-modulus β titanium alloy such as Ti‐35Nb‐7Zr‐5Ta, representing optimal mechanical properties that is needed to successfully simulate bone tissue. In order to identify the key effects of processing pathways on the development of microstructure, Young’s modulus, and strength, a nominal Ti-35Nb-7Zr-5Ta alloy was made via casting, hot forging, homogenizing, cold rolling and finally annealing. Results from tensile test alongside microscopic and XRD analysis confirm the importance influence of processing method on fully β phase microstructure, low elastic modulus and high strength of the alloy. The specimen with post-deformation annealing at 500 °C demonstrated the Young’s modulus of 49.8 GPa, yield strength of 780 MPa and ultimate tensile strength of 890 MPa, all of which are incredibly close to that of bone, hence suitable for orthopedic implants. At temperature above 500 °C, a sharp fall was observed in the mechanical properties.

Mohammad Abankar, Hossein Arabi, Mohammad Taghi Salehi, Majid Abbasi,
Volume 20, Issue 1 (3-2023)
Abstract

The aims of this research were to evaluate the effects of different thermomechanical treatments on the microstructure and investigate some of the mechanical properties of a TWIP steel rich in Mn & Al. So, a block of a TWIP steel with nominal composition Fe-17.5Mn-1.36Al-0.8C was cast and then subjected to hot rolling followed by cold rolling and heat treatment. Cold rolling was performed before heat treatment in order to reduce the grain size and improve the tensile and fatigue properties. X-ray diffraction technique was used before and after the heat treatment to evaluate the possibility of any phase formation. No sign of martensitic transformation after cold deformation was observed. However, by increasing the amount of cold deformation, the number of mechanical twins and slip band increased resulted to an increase in hardness and strength. The best tensile and fatigue result were obtained after 47% thickness reduction and annealing at 715˚C for 10 min. Under these conditions, the mean grain size reduced from 138 to 9 μm resulted to an increase in yield strength from 395 to 510 MPa, and the fatigue life improvement from the mean life of 10200 for the cast sample to 21500 cycles for the treated sample, when these samples underwent fatigue tests at a stress range of 650 MPa and R=0. In addition, the diameter and depth of dimples in fracture surfaces decreased by reducing the grain size but the fracture mode was remained ductile and adequate plastic deformation occurred before failure.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb