Search published articles


Showing 2 results for Raman Spectroscopy.

Saeid Karimi, Akbar Heidarpour, Samad Ghasemi,
Volume 18, Issue 2 (6-2021)
Abstract

In this research, expanded graphite (EG) was successfully fabricated using a simple ball milling process followed by hydrofluoric (HF, 10 wt. %) leaching. The effects of ball milling time (0-15 h) and leaching time (1-24 h) on the exfoliation of graphite were examined by XRD and Raman spectra. Furthermore, the morphological evaluation of the obtained expanded graphite samples was carried out by scanning electron microscopy (SEM). The XRD results of the ball-milled and HF treated samples showed a slight peak shift and broadening of (002) plane for expanded graphite compared to the precursor and HF-treated samples. Moreover, the intensity of the (002) planes remarkably decreased by the ball milling process but remained constant after HF treatment. Raman spectra of the samples confirmed the ordering process only in HF-treated specimens. Moreover, the intensity ratio of 2D1 to 2D2 band gradually increased with enhancing the HF treatment time up to 5 hours, indicating a decrement in the number of graphite layers by leaching in the HF solution.
Dipali Potdar, Sushant Patil, Yugen Kulkarni, Niketa Pawar, Shivaji Sadale, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract

The Nickel tungsten (Ni-W) alloy was electrodeposited on stainless steel (SS) substrate using potentiostatic mode at room temperature. Potentiostatic electrodeposition was carried out by varying the deposition time. The physicochemical properties of Ni-W alloys were studied using X-Ray diffraction (XRD), Electron Microscopy and micro-Raman spectroscopy. Recorded XRD spectra was compared with standard JCPDS card and the presence of Ni was confirmed, no such peaks for W were observed. Further study was extended for micro-Raman analysis. From Raman spectroscopy study the appearance of Ni-O and W6+=O bonds confirms that the Ni-W present in amorphous phase. Several cracks were observed in SEM images along with nanoparticles distributed over the electrode surface. The appearance of cracks may be correlated with the in-plane tensile stresses, lattice strains and stacking faults and may be related to the substrate confinements.
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb