Showing 3 results for Micro-Hardness
Seyyed Masood Bagheri , Jamal Zamani, Ali Mehdipour Omrani,
Volume 6, Issue 4 (12-2009)
Abstract
Abstract: The purpose of this study is to produce scarf joint through explosive welding process (EXW). The scarf weld is a process in which the final bond interface is oblique. With applying the explosive welding technique, this joint can create a metallic bond between similar or dissimilar metals. In this study, chamfered end of aluminum and copper plates were joined explosively and named scarf joint, employing changes in chamfered angle at different stand-off distance and explosive loading. The geometry of scarf joint enables consideration of both flyer and base plate thickness and explosive loading and the effects on mechanical properties of interface such as bond shear strength and micro-hardness can be investigated. Mathematical models developed for the interface properties of scarf joint to make relationship between the bond shear strength and explosive loading ratio. To check the adequacy of developed models, mechanical properties of interface, such as bond shear strength, predicted and compared with actual values in explosive cladding process. The results show reasonable agreement with theoretical predictions. Consequently, mathematical model which is based on scarf joints, can predict bond shear strength of cladding metals under desired explosive loading and flyer plate thickness
R. Kumar, Y. Chandra Sharma, V. Vidya Sagar, D. Bhardwaj,
Volume 17, Issue 2 (6-2020)
Abstract
In this study an effort has been made for the plasma ion nitriding (PIN) of Inconel 600 and 601 alloys at low temperatures. After plasma ion nitriding, microstructure study, growth kinetics of nitrided layer formation and wear properties were investigated by various characterization techniques such as; scanning electron microscope (SEM), X-ray diffraction (XRD) analysis, micro-hardness measurement and wear test by pin on disk technique. It was found that, surface micro-hardness increases after PIN process. A mix peak of epsilon (ε) phase with fcc (γ) phase was detected for all temperature range (350 0C to 450 0C), while the chromium nitride (CrN) phase was detected at elevated temperature range ~450 0C in inconel 601 alloy. The calculated values of diffusion coefficient and activation energy for diffusion of nitrogen are in accordance with the literature. Volume loss and wear rate of the plasma nitrided samples decreases, but it increases as PIN process temperature increases.
Muhammad Muzibur Rahman, Shaikh Reaz Ahmed,
Volume 18, Issue 4 (12-2021)
Abstract
This paper reports the wear behavior of Cu, high Cu-Sn alloy, high Cu-Pb alloy and high Cu-Sn-Pb alloy under dry sliding at ambient conditions. These four materials were chosen for the wear resistance characterization of SnPb-solder affected old/scraped copper (high Cu-Sn-Pb alloy) to explore its reusing potentials. Wear tests were conducted using a pin-on-disk tribometer with the applied load of 20N for the sliding distance up to 2772 m at the sliding speed of 0.513 ms-1. The applied load was also changed to observe its effect. The investigation reveals that the presence of a little amount of Sn increased the hardness and improved the wear resistance of Cu, while a similar amount of Pb in Cu reduced the hardness but improved the wear resistance. The general perception of ‘the harder the wear resistant’ was found to match partially with the results of Cu, Cu-Sn alloy and Cu-Sn-Pb alloy. Coefficient of friction (COF) values revealed non-linearly gradual increasing trends at the initial stage and after a certain sliding distance COF values of all four sample materials became almost steady. SnPb-solder affected Cu demonstrated its COF to be in between that of Cu-Pb alloy and Cu-Sn alloy with the maximum COF value of 0.533.