Search published articles


Showing 80 results for Composite

Mohammad Ali Maghsoudlou, Reza Barbaz Isfahani, Saeed Saber-Samandari, Mojtaba Sadighi,
Volume 18, Issue 2 (6-2021)
Abstract

The low velocity impact (LVI) response of pure and glass fiber reinforced polymer composites (GFRP) with 0.1, 0.3 and 0.5 wt% of functionalized single-walled carbon nanotubes (SWCNTs) was experimentally investigated. LS-DYNA simulation was used to model the impact test of pure and incorporated GFRP with 0.3 wt% of SWCNT in order to compare experimental and numerical results of LVI tests. All tests were performed in two different levels of energy. In 30J energy, the specimen containing 0.5 wt% SWCNT was completely destructed. The results showed that the incorporated GFRP with 0.3 wt% SWCNT has the highest energy absorption and the back-face damage area of this sample was smaller than other specimens. TEM images from specimens were also analyzed and showed the incorporation of well-dispersed 0.1 and 0.3 wt% of SWCNT, while in specimens containing 0.5 wt% of CNT, tubes tended to be agglomerated which caused a drop in LVI response of the specimen. The contact time of impactor in numerical and experimental results was approximately equal; however, the maximum contact forces in LS DYNA simulation results were higher than the experimental results which could be due to the fact that in the numerical modeling, properties are considered ideal, unlike in experimental conditions.
Saeed G. Shabestari, Sahar Ashkvary, Farnaz Yavari,
Volume 18, Issue 3 (9-2021)
Abstract

The influence of melt superheating treatment on the solidification characteristics and microstructure of Al–20%Mg2Si in-situ composite has been investigated. The results revealed that melt superheating temperature has a significant effect on solidification parameters and morphology of primary Mg2Si particles. Solidification parameters acquired using cooling curve thermal analysis method, indicate that both nucleation temperature and nucleation undercooling of primary Mg2Si particles increase by increasing melt superheating temperature, while recalescence undercooling decrease under the same condition. Also, based on the microstructural evaluations, melt superheating treatment can refine primary Mg2Si particles and alter their morphology from dendritic shape to more spherical shape and the eutectic microstructure of a-Al + Mg2Si becomes finer and the distance between eutectic layers becomes smaller.
 

Amirhosein Paryab, Toktam Godary, Sorosh Abdollahi, Mohsen Anousheh, Adrine Malek Khachatourian,
Volume 18, Issue 3 (9-2021)
Abstract

Silicon oxycarbide (SiOC) materials derived from silicone attracted great attention for their superior high-temperature behavior. In the present study, Si(Ti)OC and Si(Ti,Al)OC nanocomposites, in which alkoxide precursors were used with the main silicone precursor, have been compared with SiOC material. Although in SiOC, C was bonded with Si in a carbon-rich SiOC phase, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) showed that TiC was the preferred state for C atoms upon adding Ti into the system. This claim was also substantiated by Raman spectroscopy, where adding Ti into the system lowered the intensity of the D band, indicating the high affinity of C to form crystalline TiC. In the Si(Ti,Al)OC nanocomposites synthesized by adding AlCl3 into the Si(Ti)OC system, mullite nanocrystals formed a superlattice structure with TiC. UV-vis spectra of the nanocomposites showed Si(Ti,Al)OC with mullite-TiC superlattice had a larger bandgap compared with Si(Ti)OC with only TiC nanocrystals.
Dillibabu Surrya Prakash, Narayana Dilip Raja,
Volume 18, Issue 4 (12-2021)
Abstract

Hybrid composites consisting of AA6061 matrix reinforced with TiB2 (2, 4, 6, and 8 wt. %), Al2O3 (2 wt. %) particles were produced by the sintering process. In comparison to the base material AA6061, the composite produced had improved mechanical properties. The sintered composites' mechanical properties, such as tensile strength and hardness, are measured and compared to the wear-tested specimen. Optical micrographs reveal that composites were riddled with defects like blowholes, pinholes, and improper bonding between the particulates before sintering. However, the post-sintered optical micrograph showed that the defects were greatly suppressed. Micrographic images revealed the changes in surface characteristics before and after wear. Until a sliding distance of 260 m, the wear rate of the hybrid composites was kept lower than that of the base material. The coefficient of all the composite materials produced for this study was noted to be less than that of the base material. The results reveal that the hardness of hybrid composites having 4 wt. % and 6 wt. % of TiB2 particulates increased by 5.98 % and 1.35 %. Because of the frictional heating during the wear test, the tensile properties lowered by up to 49.6%. It is concluded that the hybrid composites having 4 wt. % and 6 wt. % of TiB2 particulates exhibited less wear rate for extended sliding distance, good hardness, moderate tensile strength, and decent elongation percentage compared to its counterparts.

Mohammad Jafaripour, Hassan Koohestani, Behrooz Ghasemi,
Volume 18, Issue 4 (12-2021)
Abstract

In this study, aluminum matrix composites reinforced with Al2O3 and SiC nanoparticles, and graphene nanoplatelets produced by Spark Plasma Sintering (SPS) were studied. The microstructural and mechanical properties of the composites were evaluated by changing the amounts of the reinforcing materials. The SEM images showed that the reinforcing particles were more distributed in the grain boundary regions. According to the results, the addition of alumina and SiC to the matrix caused an increase in the composite density whereas the composite density decreased by adding graphene nanoplatelets. The highest relative density of 96.3% was obtained for the composite containing 2 wt% Al2O3. The presence of the reinforcing particles increased the hardness of all the samples compared to the pure aluminum (39 HV). The composite containing 1 wt.% Al2O3, 0.7 wt.% SiC, and 0.3 wt.% graphene showed the highest hardness of 79 HV. Moreover, the plastic deformation of the specimens decreased and the slope of the plastic region increased by adding the reinforcing particles to the matrix.
Mojtaba Hosseini, Ali Allahverdi, Mohammad Jaafar Soltanian Fard,
Volume 19, Issue 1 (3-2022)
Abstract

The aim of the present research work is to evaluate the feasibility of processing and utilizing steel slag
in binary and ternary cement blends with limestone. The physical and microstructural properties of binary and
ternary composite cements produced by inter-grinding mixtures of ordinary Portland cement clinker, processed
steel slag and limestone in a laboratory ball mill with replacement levels varying from 0 wt.% to 30 wt.% were
studied. The effects of processed steel slag and limestone incorporation on density of dry cement mixes and water
consistency, setting time and volume stability of fresh and hardened cement pastes were investigated. Also,
density, water absorption, total open pore volume (%) and compressive strength of cement mortars were measured.
The mix with 15 wt.% limestone and 15 wt.% processed steel slag was selected as a typical ternary cement mix
for complementary studies including X-ray diffractometry, thermal gravimetry, Fourier-transform infrared
spectroscopy, and scanning electron microscopy analyses. The results show that removal of relatively high
metallic content of steel slag increases its grindability for mechanical activation and improves its hydraulic
properties effectively and makes it suitable for being recycled in cement industry. The results show that
mechanical activation of the cement mixes enhances the poor hydraulic activity of the processed steel slag and
compensates the strength loss to some extent. The physical and chemical properties of all studied composite
cement mixes comply with ASTM standard specifications, except the compressive strength of the cement mixes
at 28-days containing 20 wt.% or higher amounts of limestone ground to the relatively low Blaine specific surface
area of about 3000 cm2/g.

Silvana Artioli Schellini, Lucieni Cristina Barbarini Ferraz, Abbas Rahdar, Francesco Baino,
Volume 19, Issue 2 (6-2022)
Abstract

Biocompatible ceramics, commonly known as “bioceramics”, are an extremely versatile class of materials with a wide range of applications in modern medicine. Given the inorganic nature and physico-mechanical properties of most bioceramics, which are relatively close to the mineral phase of bone, orthopedics and dentistry are the preferred areas of usage for such biomaterials. Another clinical field where bioceramics play an important role is oculo-orbital surgery, a highly cross- and interdisciplinary medical specialty addressing to the management of injured eye orbit, with particular focus on the repair of orbital bone fractures and/or the placement of orbital implants following removal of a diseased eye. In the latter case, orbital implants are not intended for bone repair but, being placed inside the ocular cavity, have to be biointegrated in soft ocular tissues. This article reviews the state of the art of currently-used bioceramics in orbital surgery, highlighting the current limitations and the promises for the future in this field.
Saba Payrazm, Saeid Baghshahi, Zahra Sadeghian, Amirtaymour Aliabadizadeh,
Volume 19, Issue 3 (9-2022)
Abstract

In this research, zinc oxide quantum dots and graphene nanocomposites were synthesized via two different methods; In the first (direct) method, ZnO-graphene Nanocomposites were made mixing the synthesized zinc oxide and graphene. In the second (indirect) method, zinc nitrate, graphene, and sodium hydroxide were used to made ZnO-graphene Nanocomposites. XRD, FTIR and Raman spectroscopy analyses were used for phase and structural evaluations. The morphology of the nanocomposites w::as char::acterized by SEM. The specific surface area and porosity of the samples were characterized by BET analysis. The optical properties of the samples were investigated by photoluminescence and ultraviolet-visible spectroscopy analyses. Results showed that using graphene, increased the photoluminescence property and shifted the photoluminescence spectrum of the composites towards the visible light spectrum. The photoluminescence of the synthesized graphene-zinc oxide composite, in the visible light region, was closer to white light than that of pure zinc oxide. According to the results of BET test, the nanocomposite synthesized by direct method had a higher surface area (25.7 m2.g-1) and a higher porosity (0.32 cm3.g-1) than the nanocomposite synthesized by the indirect method with a specific surface area of (16.5 m2.g-1) and a porosity of 0.23 cm3.g-1).

Mohammad Roostaei, Hossein Aghajani, Majid Abbasi, Behzad Abasht,
Volume 19, Issue 3 (9-2022)
Abstract

This study investigates the synthesis of Al/MoS2 nanocomposite coating by the electro spark deposition (ESD) method for its lubricating properties. ESD method was selected because it is a very easy, rapid, and cost-saving method and the resulting coating has a strong bonding with the substrate. As a substrate, a Ti-6Al-4V alloy sheet containing 6.12 % Al, 4.06 % V, 0.19% Fe, and 0.05 % Ni was used. For coating, an aluminum-molybdenum disulfide composite electrode in the form of a cylindrical rod was employed. Three frequencies of 5, 8, and 11 kHz, three current limits of 15, 25, and 35 amps, and three duty cycles of 50, 60, and 70% were used in the coating operation. AFM analysis was used to study the topography, morphology, and calculate roughness. The samples were then subjected to hardness tests. To determine the wear resistance of the samples, pin on disk tests were performed. XRD analysis was performed to identify the phases on the surface of the coated samples. SEM was used to examine the microstructure of the coating before and after wear testing, in order to determine the wear mechanism. The results indicated that the Al/MoS2 nanocomposite coating was synthesized on the substrate surface. The hardness of the reference sample is 353 Vickers, and that of the coated samples is about 200 Vickers. For the reference sample, the roughness was measured at 15.7 nm, and for the coated sample at 268.1 nm. As spark energy increased, the coefficient of friction increased by approximately 0.09. As spark energy increased, the wear rate increased by 27%. A significant increase in the Lancaster coefficient occurred around 5 joules of energy. According to the wear rate results, the sample with the lowest thickness wears 4% less than the sample with the highest thickness. The wear rate of sample 351170 is 78% lower than that of sample 150550.
Zainab J. Shanan, Huda M.j. Ali, H.f. Al-Taay,
Volume 19, Issue 3 (9-2022)
Abstract

         The objectives of this work is to synthesize TiO2/MgO nanocomposites using a pulse laser deposition technique. At a vacuum pressure of 2.5 10-2 mBar, TiO2/MgO nanocomposites were synthesized on substrates with a laser power of 600 mJ and a wavelength of 1064 nm. This search utilizes various pulses (500, 600, and 700) at a 6-Hertz repetition rate. X-ray diffraction was utilized to investigate crystallography of the phases in the samples, as well as average crystallite size (XRD). An increase in the average crystal size was observed with an increase in the number of shots (from 35.15 to 38.08) nm at (500 to 700) shots respectively. The impact of the number of laser shots on the surface characteristics of TiO2/MgO nanocomposites was also evaluated using atomic force microscopy (AFM) and field emission scanning electron microscopy (FE-SEM). Finally, optical characteristics were evaluated using UV-Vis spectroscopy. Increasing the number of shots increased the absorbance and thus reduced the energy gap. 

Sreedevi Gogula, Sandhya Cole, Venkata Rao Kanakala, Gogula Jaya Ram Pavan Kumar, B Tirumala Rao,
Volume 19, Issue 4 (12-2022)
Abstract

The present study used a hydrothermal technique to synthesize undoped and Mn2+ doped CdS/Zn3(PO4)2 semiconducting nanocomposite materials. Powder X-ray diffraction, scanning electron microscopy, UV-Vis diffuse reflectance spectrometer, Fourier transform-Infrared Spectroscopy-FT-IR, and photoluminescence techniques were employed to study structural, optical, and luminescence properties of produced nanocomposites. The hexagonal structure of CdS and the monoclinic structure of Zn3(PO4)2 are both reflected in the powder X-ray diffraction spectra. When Mn2+ ions are present in the host lattice, a lattice distortion occurs, causing a phase change from the phase of γ-Zn3(PO4)2 to the β-phase of Zn3(PO4)2, without affecting the hexagonal phase of CdS. The average crystallite size of produced nanocomposites was 22-25 nm, and also calculated the lattice strain and dislocation density to better understand internal deformation of the samples. The FT-IR spectra were used to investigate the molecular vibrations and functional groups in the samples. The surface morphology of the nanocomposites is hexagonal spheres on rectangular shaped nano-flakes, and the interatomic distance between the hexagonal spheres is decreased as the doping concentration increases, forming a rod-like structure on the flakes. EDAX results confirm the presence of various relevant elements in the prepared samples. The quantum confinement of produced samples reduces as the Mn2+ doping concentration in the host lattice increases. The photoluminescence results demonstrate shallow trapped states due to the transition: d-d (4T1 → 6A1) of the tetrahedrally coordinated Mn2+ states and the impact of Mn2+ ions exhibiting several peaks in the UV-Visible region (365-634 nm) generating RGB (Red, Green, Blue) luminescence. Color coordinates and CCT values were calculated using the CIE diagram, and color correlated temperatures in the range of 2513–7307 K were discovered, which might be used in solid state lighting applications.
Girsha Cahya Maharani, Anne Zulfia Syahrial,
Volume 20, Issue 1 (3-2023)
Abstract

Materials that are applied to combat vehicles require an innovation as the development of the military world advances. The material innovation in this research is a lightweight hybrid laminated Al7075 composites. The main materials used in this research are aluminum 7075 plate, kevlar 29, silicon carbide (SiC) nano powder, and epoxy resin. SiC nano powder is mixed with polyethylene glycol-400 (PEG-400), then ethanol is added so that it becomes a shear thickening fluid (STF) solution which is used to impregnate kevlar. Laminate composites were prepared using the hand lay-up method with epoxy resin as an additive between layers of kevlar and aluminum 7075 plates. The thickness of laminates is various due to the number of kevlar used different of each laminated that is 8, 16, and 24 layers. The results of this study show that the composite with impregnated kevlar has higher ballistic and impact resistance values than the composite with non-impregnated kevlar, which has good potential as a base material for combat vehicles such as tanks. This is also supported by the Fourier Transfer Infrared Spectrometry (FTIR) results to determine the level of absorbance of the functional groups identified in impregnated kevlar and Scanning Electron Microscopy (SEM) results of the distribution of nano SiC filler that infiltrated to the empty space in the kevlar fiber.
Behzad Rahimzadeh, Maisam Jalaly, Mehrdad Roshan,
Volume 20, Issue 1 (3-2023)
Abstract

Considering the widespread use of aluminum composites in various industries and the emergence of nanomaterials such as graphene and boron nitrite (BN) with their unique properties, aluminum-based nanocomposite reinforced by the graphene-BN hybrid was fabricated at different percentages. For this purpose, the graphene-BN hybrid was prepared and subjected to wet milling along with the aluminum powder. The mechanical properties of the final nanocomposite which was consolidated using the spark plasma sintering (SPS) method were examined. Aluminum-based composite specimens containing 1 wt.% graphene0 wt.% BN (AGB1), 0.95 wt.% graphene0.05 wt.% BN (AGB2), 0.90 wt.% graphene0.1 wt.% BN (AGB3), and 0.85 wt.% graphene0.15 wt.% BN (AGB4) were fabricated and compared with non-reinforced aluminum (AGB0). The hardness values of 48.1, 51.1, 56.2, 54.1, and 43.6 Hv were obtained for AGB0, AGB1, AGB2, AGB3, and AGB4, respectively. Additionally, tensile strengths of these specimens were 67.2, 102.1, 129.5, 123.7, and 114.7 MPa, respectively. According to the results of the hardness and tensile tests, it was revealed that the AGB2 specimen had the highest tensile strength (93% higher than AGB0 and 27% higher than AGB1) and hardness (17% higher than AGB0 and 10% higher than AGB1).
Ayça Tanrıverdi, Saniye Tekerek,
Volume 20, Issue 3 (9-2023)
Abstract

In this study, zinc chloride (ZnCl) was used as a precursor chemical to form boron reinforced zinc oxide (ZnO:B) particles. The supercapacitor performance of the reduced graphene oxide/boron reinforced zinc oxide (RGO/ZnO:B) composite electrodes produced by hydrothermal methods, and the impact of different boron doping ratios on the capacitance, were both examined. The characterization of the RGO/ZnO:B composites containing 5%, 10%, 15% and 20% boron by weight were performed using X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The capacitance measurements of the electrodes produced were conducted in a 6 M KOH aqueous solution with a typical three electrode setup using Iviumstat potentiostat/galvanostatic cyclic voltammetry. The specific capacitance value of the 20% reinforced RGO/ZnO:B composite electrode was 155.88 F/g, while that of the RGO/ZnO composite electrode was 36.37 F/g. According to this result, the capacitance increased four-fold with a 20% boron doping concentration. Moreover, a longer cycle performance was observed for the RGO/ZnO:B electrodes with higher boron doping concentrations.
 
Saeedeh Mansoury, Maisam Jalaly, Mohammad Khalesi Hamedani,
Volume 20, Issue 4 (12-2023)
Abstract

In this study, an epoxy-based nanocomposite reinforced with copper oxide-graphene oxide hybrid was investigated. Initially, the hybrid powder of CuO–GO with a weight ratio of 9:1 was prepared. The hybrid filler with different weight percentages ranging from 0.1–0.5 was used to reinforce the epoxy resin. The prepared samples were analyzed using XRD, FTIR, FESEM, TEM, and tensile testing. According to the XRD results and SEM images, the hybrid powder was successfully prepared, and the mechanical testing results showed an improvement in tensile strength in the composite samples. The best composite sample in terms of tensile strength was the one containing 0.3 wt% of hybrid reinforcement, which exhibited a 73% increase in strength compared to the neat resin sample.
Pravin Jadhav, R.s.n Sahai, Deepankar Biswas, Asit Samui,
Volume 20, Issue 4 (12-2023)
Abstract

The present work deals with the effect of Multi-walled Carbon Nanotube (MWCNT) and functionalized (carboxyl and amine) MWCNT on the mechanical properties of the PAEK (Poly Aryl Ether Ketone) polymer composite. The MWCNT and functionalized (carboxyl and amine) MWCNT concentration varied as 0.25, 0.5 and 0.75 weight percentages. Compositeswere prepared by using a melt compounding method using a twin-screw extruder and all testing samples were prepared using an injection molding machine as per American Society for Testing and Materials (ASTM) standards. Samples were tested for tensile strength, impact strength, flexural strength, heat deflection temperature, hardness, and density. There is an increase in the tensile strength, impact strength, flexural strength, and heat deflection temperature, with percentage increase in filler loading up to 0.5 %, followed by decrease in it with higher filler loading. The increase is maximum for amine functionalized MWCNT.

 
Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (6-2024)
Abstract

With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.
 
Alireza Zibanejad-Rad, Ali Alizadeh, Seyyed Mehdi Abbasi,
Volume 21, Issue 2 (6-2024)
Abstract

Pressureless sintering was employed at 1400 °C to synthesize Ti matrix composites (TMCs) reinforced with in-situ TiB and TiC reinforcements using TiB2 and B4C initial reinforcements. The microstructure and wear behavior of the synthesized composites were evaluated and compared and the results showed that B4C caused the formation of TiB-TiC in-situ hybrid reinforcements in the Ti matrix. Also, TiB was in the form of blades/needles and whiskers, and TiC was almost equiaxed. Moreover, the volume fraction of the in-situ formed reinforcement using B4C was much higher than that formed using TiB2. In addition, although the hardness of the B4C-synthesized composites was higher, the composite synthesized using 3 wt.% TiB2 exhibited the highest hardness (425 HV). The wear test results showed that the sample synthesized using 3 wt.% TiB2 showed the lowest wear rate at 50 N, mainly because of its higher hardness. The dominant wear mechanism in the samples synthesized using 3 wt.% B4C was abrasive and delamination at 50 N and 100 N, respectively while in the samples synthesized 3 wt.% TiB2, a combination of delamination and adhesive wear and adhesive wear was ruling, respectively.

 
Wed Abed,
Volume 21, Issue 2 (6-2024)
Abstract

Silver/polyvinyl alcohol (Ag/PVA) nanocomposites were fabricated via an electrochemical method. Silver nanoparticles (AgNPs) with varying grain sizes were directly synthesized within PVA polymer matrices at deposition times of 15, 30, 45, 60, and 120 minutes. The integration of AgNPs within the PVA matrix was confirmed through Transmission Electron Microscopy (TEM) and optical absorbance measurements. X-ray Diffraction (XRD) analysis demonstrated the face-centered cubic structure of AgNPs. Furthermore, these prepared nanocomposites exhibited significant antibacterial properties against Bacillus subtilis and Pseudomonas pneumonia, as well as antifungal activity against Alternaria alternata. Remarkably, the AgNPs/PVA nanocomposite exhibited outstanding antifungal efficiency, resulting in an impressive inhibition zone of up to 47 mm.
 
Satish Ahire, Ashwini Bachhav, Bapu Jagdale, Thansing Pawar, Prashant Koli, Dnyaneshwar Sanap, Arun Patil,
Volume 21, Issue 2 (6-2024)
Abstract

Hybrid photocatalysts, comprising both inorganic and organic polymeric components, are the most promising photocatalysts for the degradation of organic contaminants. The nanocomposite, Titania-Polyaniline (TiO2-PANI) was synthesized using the chemical oxidative polymerization method. Various characterization techniques were employed to assess the properties of the catalysts. The ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis revealed that the TiO2 absorbs only UV light while the TiO2-PANI nanocomposite absorbs light from both UV and visible regions. The X-ray diffraction (XRD) results confirmed the presence of TiO2 (anatase) in both TiO2 nanoparticles and TiO2-PANI (Titania-Polyaniline)  nanocomposite. The phases of the catalysts were verified through Raman, TEM, and SAED techniques where all results are in good agreement with each other. The average crystallite size of TiO2 nanoparticle and TiO2-PANI nanocomposite were 13.87 and 10.76 nm. The thermal stability of the catalysts was assessed by the Thermal gravimetric analysis (TGA) technique. The order of the thermal stability is TiO2 > TiO2-PANI > PANI.  The crystal lattice characteristics were confirmed using Transmission electron microscopy (TEM). The surface area measurements were confirmed from the Brunauer-Emmett-Teller (BET) study and were employed for the evaluation of the photocatalytic efficiency of both, TiO2 nanoparticles and TiO2-PANI nanocomposite catalysts. The energy dispersive spectroscopy (EDS) study was employed for elemental detection of the fabricated materials. While Raman spectroscopy was employed for the chemical structure and the phase characteristics of the materials. The standard conditions for the degradation of the CF dye were 8 g/L of catalyst dosage, 20 mg/L of dye concentration, and a pH of 7. The TiO2-PANI nanocomposite exhibited superior efficiency as compared to pure TiO2 nanoparticles, achieving almost 100 % degradation in just 40 minutes.  

Page 4 from 4     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb