Search published articles


Showing 398 results for Co

Maryam Salehi, Milad Dadashi, S. Parsa Kashani Sani,
Volume 20, Issue 2 (6-2023)
Abstract

In the present study, bulk refined-structured Al 5083 alloy with high mechanical properties was successfully fabricated by hot consolidation process of nanostructured melt- spun flakes. The influence of cooling rate and pressing conditions on the microstructure and mechanical properties of the alloy were investigated using X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), microhardness, and compression tests. Rapid solidification combined with the hot consolidation at T=753 K (480 °C) and P= 800 MPa for 20 min produced a bulk sample with the desirable bonding, good microhardness (184.2±12.4 HV), and high strength (273±8 MPa) combined with 7 pct. fracture strain. These amounts are 78.6±5.1 HV, 148 ±9 MPa and about 5 pct. for the as-cast sample. Microstructural refinement during the controlled consolidation of nanostructure rapidly- solidified flakes contributes to such high mechanical properties of the bulk sample.

 
Israa Khahtan Sabree, Batool Abd Aladel Jabar,
Volume 20, Issue 3 (9-2023)
Abstract

Abstract. Hydroxyapatite (HA) scaffold is commonly used in the applications of bone tissue engineering due to its bioactivity and equivalent chemical composition to the inorganic constituents of human bone. The present study focused on the fabrication of porous 3D hydroxyapatite scaffold which was modified by polymer coating as a successful strategy to improve the mechanical properties. A 3D porous hydroxyapatite scaffolds were fabricated by gel-casting method by using freshly extracted egg yolk (EY) with (50 and 60)wt% of HA powder. To enhance the mechanical properties, composite PVA/ HA scaffolds were produced by using dip coating in Polyvinyl alcohol (PVA). Fourier transform infrared spectroscopy (FTIR) was used to recognize the functional group associated with the hydroxyapatite scaffolds before and after PVA coating. The physical (density and porosity) and mechanical (compressive strength and elastic modulus) properties were investigated before and after coating. SEM was used to inspect the surface morphology and pore modification of the scaffolds. Wettability was determined by using a water contact angle to analyze the scaffold hydrophobicity. Surface roughness was studied by atomic force microscopy (AFM). It was revealed that the scaffold porosity decreased with increase solid loading of HA powder in the gel and after PVA coating. The findings showed that PVA coating improved mechanical strength of scaffold to be double by covering the small pores and filling microcracks sited on the scaffold strut surfaces, inducing a crack bridging mechanism. The scaffolds’ strength was in the range of trabecular bone strength. This indicates  non-load bearing applications.

Fabio Edson Mariani, Gabriel Viana Figueiredo, German Barragan, Luiz Carlos Castelleti, Reginaldo Teixeira Coelho,
Volume 20, Issue 3 (9-2023)
Abstract

Elevating component performance through advanced surface coatings finds its epitome in the domain of laser cladding technology. This technique facilitates the precision deposition of metallic, ceramic, or cermet coatings, accentuating their superiority over conventional methods. The application spectrum for laser-clad metallic coatings is extensive, encompassing critical components. Central to the efficacy of laser cladding is the modulation of laser parameters—encompassing power, speed, and gas flow—which decisively influence both process efficiency and coating properties. The meticulous calibration of these parameters holds the key to producing components endowed with refined attributes while ensuring the sustainable continuation of the process. As such, this study embarks on an empirical investigation aimed at transcending existing process limitations. It delves into the characterization of laser-clad WC-17Co coatings on AISI H13 and AISI 4140 steels. The importance of WC-17Co coatings lies in their capacity to enhance wear resistance, extend component life, reduce maintenance costs, and improve the performance of various industrial components across diverse sectors. On the other hand, the substrates have pivotal roles. AISI H13 is lauded for its exceptional hot work capabilities, while AISI 4140 steel is renowned for its robust strength and endurance. Through rigorous evaluation, the resultant deposited coatings offer crucial insights into the efficacy of manufacturing parameters. Employing a comprehensive suite of analytical techniques including laser confocal microscopy, Vickers microhardness assessment, and micro-adhesive wear testing, the study thoroughly characterizes the samples. The outcomes underscore the achievement of homogenous coatings marked by elevated hardness and exceptional wear resistance, thereby signifying a substantial enhancement over the substrate materials.
Salihah Alkhobrani, Hossein Bayahia, Fares T. Alshorifi,
Volume 20, Issue 3 (9-2023)
Abstract

In this study, CoFe2O4  (CoF) and ZnFe2O4 (ZnF) photocatalysts were successfully prepared by a facile and simple chemical precipitation method for degradation of methylene blue (MB) and methyl orange (MO) dyes under direct sunlight irradiation. The obtained ferrites were then characterized through XRD, TEM, EDS, UV-vis, and SEM. XRD and TEM results exhibited cubic nanostructures with sizes ranging from 9 to 16 nm and 11 to 18 nm for ZnF and CoF, respectively. SEM images showed homogenous, porous flat surfaces. EDS spectra confirmed the successful synthesis of ZnF and CoF nanostructures with high purity. UV-vis spectra results of MB and MO dyes showed maximum sunlight absorbance in the absence of ZnF and CoF, while a regular decrease in the sunlight absorbance was observed in the presence of ZnF and CoF within 15-60 min. The UV-vis results also showed that ZnF had higher photocatalytic activity than CoF. The experimental findings showed that the highest % degradation was 92.89% and 96.89% for MO and MB dyes, respectively, over ZnF compared to CoF photocatalyst (87.55% and 88.41% for MO and MB, respectively). These findings confirm that porous ZnF and CoF nanostructures are critical in promoting the degradation of dyes under sunlight instead of UV-vis light lamps that consume/require electrical energy.
Ayça Tanrıverdi, Saniye Tekerek,
Volume 20, Issue 3 (9-2023)
Abstract

In this study, zinc chloride (ZnCl) was used as a precursor chemical to form boron reinforced zinc oxide (ZnO:B) particles. The supercapacitor performance of the reduced graphene oxide/boron reinforced zinc oxide (RGO/ZnO:B) composite electrodes produced by hydrothermal methods, and the impact of different boron doping ratios on the capacitance, were both examined. The characterization of the RGO/ZnO:B composites containing 5%, 10%, 15% and 20% boron by weight were performed using X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The capacitance measurements of the electrodes produced were conducted in a 6 M KOH aqueous solution with a typical three electrode setup using Iviumstat potentiostat/galvanostatic cyclic voltammetry. The specific capacitance value of the 20% reinforced RGO/ZnO:B composite electrode was 155.88 F/g, while that of the RGO/ZnO composite electrode was 36.37 F/g. According to this result, the capacitance increased four-fold with a 20% boron doping concentration. Moreover, a longer cycle performance was observed for the RGO/ZnO:B electrodes with higher boron doping concentrations.
 
Bijan Eftekhari Yekta, Omid Banapour Ghafari,
Volume 20, Issue 4 (12-2023)
Abstract

Glasses in the B2O3-Li2 (O, Cl2, I2) system were prepared through the conventional melt-quenching method. Then, the conductivity of the molten and glassy states of these compositions was evaluated. Furthermore, the thermal and crystallization behavior of the glasses was determined using simultaneous thermal analysis (STA) and X-ray diffractometry (XRD). The electrical conductivity of the melts was measured at temperatures ranging from 863 to 973 K, and the activation energy of the samples was calculated using the data obtained from ion conduction in the molten state and found to be in the vicinity of 32 kcal/mol. In glassy states, electrical conductivity was also measured. To determine this property, the electrochemical impedance spectroscopy method (EIS) was used. In the molten state, temperature played an important role in the ion conductivity; however, at lower temperatures, other factors became important. Based on the results, the addition of LiI and LiCl to the B2O3-Li2O base glass system (75 B2O3, 10 Li2O, 7.5 LiI, 7.5 LiCl) (mol%) increases the ionic conductivity of the glass from 3.2 10-8 S.cm-1 to 1.4 10-7 S.cm-1 at 300 K.
 
Ahmed Hafedh Mohammed Mohammed, Khairul Anuar Bin Shariff, Mohamad Hafizi Abu Bakar,
Volume 20, Issue 4 (12-2023)
Abstract

The coated β-tricalcium phosphate (β-TCP) with dicalcium phosphate dihydrate (DCPD) has attracted much attention in the biomaterials field due to the increase in its osteoconductivity. Besides, the porous bioceramic scaffolds with controlled pore sizes are significant in stimulating bone-like cell activity. In this study, the effect of the setting-time process and acidic-calcium phosphate (CaP) concentrations on the fabrication and properties of porous DCPD/ β-TCP scaffolds were studied. Subsequently, the specimens were examined using X-ray diffraction (XRD), scanning electron microscopy (SEM), compression strength and Fourier transforms infrared (FTIR). The study results revealed that the porous DCPD/ β-TCP scaffolds with macro- and micropore sizes were successfully obtained after the 300-600 µm of porous β-TCP granules were exposed to an acidic-CaP solution. Furthermore, the setting-time process and acidic-CaP concentrations increased the DCPD interlocking between granules, and the mechanical strengths of scaffolds increased up to 0.5 MPa. Meanwhile, the porosity levels were changed based on the formation of DCPD crystals. This study was expected to provide novel insights to researchers in the field of bioceramics through its investigation on the creation of porous DCPD/ β-TCP scaffolds.

 
Saeedeh Mansoury, Maisam Jalaly, Mohammad Khalesi Hamedani,
Volume 20, Issue 4 (12-2023)
Abstract

In this study, an epoxy-based nanocomposite reinforced with copper oxide-graphene oxide hybrid was investigated. Initially, the hybrid powder of CuO–GO with a weight ratio of 9:1 was prepared. The hybrid filler with different weight percentages ranging from 0.1–0.5 was used to reinforce the epoxy resin. The prepared samples were analyzed using XRD, FTIR, FESEM, TEM, and tensile testing. According to the XRD results and SEM images, the hybrid powder was successfully prepared, and the mechanical testing results showed an improvement in tensile strength in the composite samples. The best composite sample in terms of tensile strength was the one containing 0.3 wt% of hybrid reinforcement, which exhibited a 73% increase in strength compared to the neat resin sample.
Pravin Jadhav, R.s.n Sahai, Deepankar Biswas, Asit Samui,
Volume 20, Issue 4 (12-2023)
Abstract

The present work deals with the effect of Multi-walled Carbon Nanotube (MWCNT) and functionalized (carboxyl and amine) MWCNT on the mechanical properties of the PAEK (Poly Aryl Ether Ketone) polymer composite. The MWCNT and functionalized (carboxyl and amine) MWCNT concentration varied as 0.25, 0.5 and 0.75 weight percentages. Compositeswere prepared by using a melt compounding method using a twin-screw extruder and all testing samples were prepared using an injection molding machine as per American Society for Testing and Materials (ASTM) standards. Samples were tested for tensile strength, impact strength, flexural strength, heat deflection temperature, hardness, and density. There is an increase in the tensile strength, impact strength, flexural strength, and heat deflection temperature, with percentage increase in filler loading up to 0.5 %, followed by decrease in it with higher filler loading. The increase is maximum for amine functionalized MWCNT.

 
Hajar Hussein, Mohammed Mohammed, Furat Al-Saymari,
Volume 21, Issue 0 (3-2024)
Abstract

 Poly(2-aminobenzothiazole) (PAT) is a relatively new heterocyclic conducting polymer having a sulfur and nitrogen-rich chemical structure. During the past decade or so, there have been notable advances on the development of PAT. Especially, PAT and PAT-based composites have shown great potential for their applications in photovoltaic cells, solar cells and anti-corrosion organic coatings.   In this study, 2-aminothiazole was successfully prepared as pure polymer and as composite materials with multi-wall carbon nanotubes (MWCNTs). FTIR, X-ray diffraction and SEM images were investigated, showing that the composite of poly 2-aminobenzothiazole: MWCNTs was successfully synthesized. The electrical features of the pure polymer and the composite thin films were examined. The findings show that the conductivity of the pure polymer and composite thin films are about 1.67x10-6  (S/cm) and 4.1x10-2 (S/cm), respectively, exhibiting a significant enhancement by a factor of 2.5x104 times as a results of doping the pure polymer by 1% wt MWCNTs.
 
Marzieh Akbari, Fatemeh Dabbagh Kashani, Seyed Mohammad Mirkazemi,
Volume 21, Issue 0 (3-2024)
Abstract

CIGS solar cells are currently very high-efficiency thin-film solar cells. With regard to higher efficiency in solar cells, research is being conducted on the influence of both light scattering and plasmonic resonances due to metallic nano-structures. This article discusses the assessment of the incorporate plasmonic nanostructures on the absorber layer of a 1000 nm CIGS solar cell, in terms of light absorption and device performance. It is noted that decisions on material, size, and surface coverage (Occupied Factor) were important considerations that affected the performance. Opto-electrical assessment was used to investigate absorption, charge-carrier generation, current density-voltage response, power-voltage properties, and total efficiency. Using simulations, we discovered the aluminum nanosphere arrays (200 nm diameter, Occupied Factor 0.64) at the top of the absorber layer yielded the maximum efficiency (26.14%). This was shown by the resonances, and near-field distribution garnered from the nanospheres boost charge carrier generation, diminished recombination losses, and increased charge separation. Collectively, these raised the performance of the CIGS solar cells in this research and suggested hope for moving CIGS and potentially other photovoltaics forward using nanoscale plasmonic resonances.
Farhood Heydari, Seyed Mohammad Mirkazemi, Bijan Eftekhari Yekta, Seyyed Salman Seyyed Afghahi,
Volume 21, Issue 0 (3-2024)
Abstract

This study systematically investigates the crystallization behavior, phase evolution, and dielectric properties of a BaO-Al₂O₃-SiO₂ glass system modified with 10 wt% TiO₂. Thermal characterization revealed that TiO₂ addition notably reduced the glass transition temperature (from 781.6°C to 779.4°C) and softening point (from 838°C to 824.8°C) compared to the TiO₂-free glass, consequently decreasing the calculated nucleation temperature (from 810°C to 800°C). While differential thermal analysis indicated sluggish crystallization kinetics, isothermal heat treatments identified 1000°C as the optimal processing temperature, leading to the development of a multiphase crystalline assemblage that beneficially included the target monoclinic Ba3.75Al7.5Si8.5O32 phase, which was absent in the TiO₂-free glass. X-ray diffraction identified this phase, along with celsian (BaAl₂Si₂O8) polymorphs and barium titanate crystallites, as the dominant crystalline phases. SEM revealed anisotropic crystal growth (1.14-1.52 μm length). Dielectric characterization in the Ku-band (12.4-18 GHz) demonstrated significant property enhancements, with the relative permittivity decreasing from 10.40 to 6.38 and loss tangent improving from 0.3 to 0.2 after crystallization. These improvements, attributed to the specifically tailored crystalline phase assemblage facilitated by TiO₂, make this glass-ceramic system particularly suitable for advanced microwave applications requiring low dielectric loss and high-frequency stability. The effectiveness of TiO₂ as a crystallization modifier for achieving optimized dielectric properties through controlled devitrification and targeted phase formation is underscored.
Ali Azari Beni, Saeed Rastegari,
Volume 21, Issue 0 (3-2024)
Abstract

Aluminide coatings are widely used in high-temperature applications due to their excellent corrosion resistance and thermal stability. However, optimizing their composition and thickness is crucial for enhancing performance under varying operational conditions. This study investigates the optimization of aluminide coatings through a data-driven approach, aiming to predict the coating thickness based on various composition and process parameters. A comparative analysis of six machine learning models was conducted, with the k-nearest neighbors regressor (KNNR) demonstrating the highest predictive accuracy, yielding a coefficient of determination R² of 0.78, a root mean square error (RMSE) of 18.02 µm, and mean absolute error (MAE) of 14.42. The study incorporates SHAP (Shapley Additive Explanations) analysis to identify the most influential factors in coating thickness prediction. The results indicate that aluminum content (Al), ammonium chloride content (NH4Cl), and silicon content (Si) significantly impact the coating thickness, with higher Al and Si concentrations leading to thicker coatings. Zirconia (ZrO2) content was found to decrease thickness due to competitive reactions that hinder Al deposition. Furthermore, the level of activity in the aluminizing process plays a crucial role, with high-activity processes yielding thicker coatings due to faster Al diffusion. The pack cementation method, in particular, produced the thickest coatings, followed by gas-phase and out-of-pack methods. These findings emphasize the importance of optimizing composition and processing conditions to achieve durable, high-performance aluminide coatings for high-temperature applications.
 
Fatemeh Rafati, Narges Johari,
Volume 21, Issue 0 (3-2024)
Abstract

It must be recognized that the degree of this factor will influence how well wound-healing materials perform water absorption, protein interaction, and cellular adhesion. In the present study, we are concerned with studying the effects of polyethylene glycol (PEG) and curcumin (Cur) on the hydrophilicity of silk fibroin (SF)/linen (LN) composite films. The SF and LN composite films were blended at an equal mass ratio of 1:1, and PEG and Cur were also added to induce changes in surface properties. Fourier-transform infrared analyses showed that intermolecular interactions and hydrogen bonding were formed among the components in the blends. There was a very obvious hydrophobicity reduction by the addition of Cur and PEG/Cur, as exemplified by the static water contact angle measurements: simply addition of Cur to SF lowered the contact angle from approximately 100° to 72°, whereas a co-addition of PEG and Cur produced the greatest reduction (64°), equalling 70%. The synergistic effect in the surface wettability enhancement occurs because both additives introduce polar moieties onto the surface and partially disrupt the SF crystalline structure. Water uptake and cell viability tests further verified the hydrophilicity and biocompatibility of PEG/Cur-modified SF/LN films. This promotes the use of PEG/Cur-modified SF/LN blends as hydrophilic, bioactive materials suited for advanced wound dressing and tissue engineering scaffolds.
Samrat Mane,
Volume 21, Issue 1 (3-2024)
Abstract

In this research work, Cadmium Sulphide thin film deposited on to glass substrate in a non-aqueous medium at 80°C. The various physical preparative parameters and the deposition conditions, such as the deposition time and temperature, concentrations of the chemical species, pH, speed of mechanical stirring, etc., were optimized to yield good quality films. The as-prepared sample is tightly adherent to the substrate's support, less smooth, diffusely reflecting and was analyzed for composition. The synthesized film is characterized using X- ray diffraction (XRD), electrical and optical properties. It appears that the composites are rich in Cd. The grown CdS thin film had an orange-red color. A band gap of CdS thin film is 2.41 eV.  The average crystallite size of the CdS film was 21.50 nm. The resistivity of the CdS thin film is about 5.212 x 105 W cm.
 
Dipali Potdar, Sushant Patil, Yugen Kulkarni, Niketa Pawar, Shivaji Sadale, Prashant Chikode,
Volume 21, Issue 1 (3-2024)
Abstract

The Nickel tungsten (Ni-W) alloy was electrodeposited on stainless steel (SS) substrate using potentiostatic mode at room temperature. Potentiostatic electrodeposition was carried out by varying the deposition time. The physicochemical properties of Ni-W alloys were studied using X-Ray diffraction (XRD), Electron Microscopy and micro-Raman spectroscopy. Recorded XRD spectra was compared with standard JCPDS card and the presence of Ni was confirmed, no such peaks for W were observed. Further study was extended for micro-Raman analysis. From Raman spectroscopy study the appearance of Ni-O and W6+=O bonds confirms that the Ni-W present in amorphous phase. Several cracks were observed in SEM images along with nanoparticles distributed over the electrode surface. The appearance of cracks may be correlated with the in-plane tensile stresses, lattice strains and stacking faults and may be related to the substrate confinements.
 
Avinash Ramteke, Pradnya Chougule, Pranali Chavan, Amit Yaul, Gourav Pethe,
Volume 21, Issue 1 (3-2024)
Abstract

Nickel doped CoMn ferrites with high magnetization were synthesized by double sintering solid state route with compositions of Co0.7-xNixMn0.3Fe2O4 with x = 0, 0.05, 0.1 and 0.15. Theoretical Cation distribution for cubic spinel ferrites was suggested on basis of electrical configuration expectations and cation site preferences. Cation distribution suggested was in good agreement with experimental results obtained from VSM and XRD. Values of theoretically calculated magnetic moment, coercivity and magnetization are in good agreement with experimental data obtained from VSM. Maximum saturation magnetization of 37.7emu/gm is obtained for sample Co0.7Mn0.3Fe2O4 at magnetic field of 5K Oe. Magnetostriction was found to increase with increasing magnetic field (from 1KOe to 5KOe.) Maximum magnetostriction of 84ppm was observed for sample Co0.7Mn0.3Fe2O4 at 5KOe. Maximum magnetization of magnetoelectric composites with 30% Co0.7-xNixMn0.3Fe2O4 – 70% PbZr0.48Ti0.52 was found to be 7.4 emu/g for composition with x = 0.
 
Sandesh Jirage, Kishor Gaikwad, Prakash Chavan, Sadashiv Kamble,
Volume 21, Issue 1 (3-2024)
Abstract

The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.
The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.

Mohammad Derakhshani, Saeed Rastegari, Ali Ghaffarinejad,
Volume 21, Issue 2 (6-2024)
Abstract

In this research, a nickel-tungsten coating as a catalyst for hydrogen evolution reaction (HER) with different current densities was synthesized and the resulting electrocatalytic properties and morphology were assessed. Linear sweep voltammetry (LSV), electrochemical impedance spectroscopy (EIS), and chronoamperometry in 1 M NaOH were used to evaluate the electrocatalytic activity for HER. By increasing the current density of electrodeposition up to 500 mA/cm2, a columnar morphology was observed. The cyclic voltammetry test (CV) revealed that when the plating current density increases, Cdl has increased from 248 to 1310 µF/cm2 and the active surface area increases 5 times. The results showed that by modifying the coating morphology, the current density of the hydrogen evolution increased up to two times.
 
Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (6-2024)
Abstract

With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.
 

Page 18 from 20     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb