Search published articles


Showing 392 results for Co

N. Eslami Rad*, Ch. Dehghanian,
Volume 7, Issue 4 (10-2010)
Abstract

Abstract: Electroless Nickel (EN) composite coatings embedded with Cr2O3 and/or MoS2 particles were deposited to combine the characters of both Cr2O3 and MoS2 into one coating in this study. The effects of the co-deposited particles on corrosion behavior of the coating in 3.5% NaCl media were investigated. The results showed that both Ni-P and Ni-P composite coatings had significant improvement on corrosion resistance in comparison to the substrate. Codeposition of Cr2O3 in coating improved corrosion characteristic but co-deposition of MoS2 decreased corrosion resistance of the coating.
M. Farzalipour Tabriz, M. Ghassemi Kakroudi*,
Volume 7, Issue 4 (10-2010)
Abstract

Abstract: Cordierite-Mullite based kiln furnitures are widely used in fast-firing of ceramic products because of their low thermal expansion which confer them a very good ability to thermal shock resistance. Difference in CTE of constituent phase can develop damage during thermal cycling due to internal stresses. Increase in industrial competitiveness leads to the development of new means for extending refractory life and increasing reliability of industrial tools so investigations regarding the structuralmechanical behaviour of refractory systems are becoming essential. In this paper, Thermo-mechanical design of commercial Cordierite-Mullite based kiln furniture was investigated by using finite element method (FEM) and possible solutions for improvement of working life have been considered. The results indicated that the change of the kiln furniture geometry can decrease the maximum thermomechanical stress in study conditions which can prolong the refractory service life. Obtained results indicate the existence of an optimal thickness for the section under maximum thermo-mechanical stress. Increasing filet radius of ring region from 3 to 9 mm decreases thermo-mechanical stress value from 113 to 93 MPa.
M. Ghatee, M.h. Shariat,
Volume 8, Issue 1 (3-2011)
Abstract

Abstract: Zirconia solid electrolytes with nonequilibrium composite structure were prepared by impregnation of a porous 8YSZ matrix with a solution of Zirconia. Microstructures were characterized by XRD and SEM. The electrical properties were studied by impedance spectroscopy as a function of temperature. Biaxial flexural strength and fracture toughness of composite samples were measured by ring on ring and Vickers microhardness indentation methods respectively. The microstructures of the composite electrolytes were composed of cubic grains surrounded by tetragonal second phase grains. It was shown that the electrical and mechanical properties of the prepared electrolyte can be adjusted by controlling the amount of doped zirconia. Increasing the amount of doped zirconia increases the tetragonal phase content which improves fracture toughness and fracture strength. In addition, increasing tetragonal phase content of the composite electrolytes decreases the conductivity at high temperatures while the situation is reversed at low temperatures.
N. Hamedani Golshan,, H. Sarpoolaky, A. R. Souri,
Volume 8, Issue 1 (3-2011)
Abstract

Abstract: Efforts have been carried out in order to use microsilica to develop a forsterite bond rather than other types of binders in the basic refractory castables. According to the higher drying rate and sinterability of colloidal silica, it has been proposed in the recent years. In the present work, effects of replacement of microsilica by colloidal silica evolution of forsterite bond have been studied in magnesia based refractory castables. In this way, Physical properties of prepared samples with different amount of colloidal silica versus temperature were investigated. In addition, phase variation and microstructural evolution of sintered specimens at 1000, 1200 and 1400 °C were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM) respectively. Results showed that, due to Reaction of magnesia with microsilica and colloidal silica, magnesium hydrate and magnesium silicate hydrate formed in the dried samples strengthening the texture of the samples while forsterite formed from about 1000 °C and gradually increased with temperature rise. Also, better forsterite formation would be appeared by increasing the colloidal silica content. Further investigation carried out on the type of silica addition on properties of the castable refractory samples. It was found that the presence of micro silica and colloidal silica simultaneously (MS3C3 sample) at 1400 °C, caused modifying mechanical strength in compare with sample with only micro silica (MS sample).
T. Rostamzadeh, H. R. Shahverd,
Volume 8, Issue 1 (3-2011)
Abstract

Abstract: In this study Al-5 (Vol) % SiCp nanocomposite powder has been successfully synthesized by high-energy planetary milling of Al and SiC powders for a period of 25 h at a ball-to-powder ratio of 15:1. The changes of the lattice strain, the crystallite size of the matrix phase, and the nanocomposite powder microstructure with time have been investigated by X-ray diffraction (XRD), X-ray mapping, and scanning electron microscopy (SEM) analyses. The morphologies of the nanocomposite powders obtained after 25 h of milling have also been studied by transmission electron microscopy (TEM). The results showed that nanocomposite powders were composed of near-spherical particles and, moreover, the SiC particles were uniformly distributed in the aluminum matrix.
R. Taherzadeh Mousavian, S. Sharafi, M. H. Shariat,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: Nano-structural synthesized materials can be fabricated utilizing intensive milling after combustion synthesis. The Al2O3-TiB2 ceramic composite has been synthesized by aluminothermic reactions between Al, Ti (TiO2), and B (B2O3 or H3BO3). Boric acid (H3BO3) is less expensive than boron oxide, and after being dehydrated at 200°C, boron oxide will be obtained. In this study, Al, TiO2, and boric acid were used as the starting materials to fabricate an Al2O3-TiB2 ceramic composite. After mechanical activation and thermal explosion processes, intensive milling was performed for 5, 10, and 20h to assess the formation of a nano-structural composite. The X-ray phase analysis of the as-synthesized sample showed that considerable amounts of the remained reactants incorporated with the TiO phase were present in the XRD pattern. The results showed that the average crystallite size for alumina as a matrix were 150, 55 and 33 nm, after 5h, 10h, and 20h of intensive milling, respectively. The SEM microstructure of the as-milled samples indicated that increasing the milling duration after combustion synthesis causes a significant reduction in the particle size of the products, which leads to an increase in the homogeneity of particles size. A significant increase in the microhardness values of the composite powders was revealed after intensive milling process.
H. Momeni, H. Razavi, S. G. Shabestari,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: The supersolidus liquid phase sintering characteristics of commercial 2024 pre-alloyed powder was studied at different sintering conditions. Pre-alloyed 2024 aluminum alloy powder was produced via air atomizing process with particle size of less than 100 µm. The solidus and liquidus temperatures of the produced alloy were determined using differential thermal analysis (DTA). The sintering process was performed at various temperatures ranging from the solidus to liquidus temperatures in dry N2 gas atmosphere for 30 min in a tube furnace. The maximum density of the 2024 aluminum alloy was obtained at 610ºC which yields parts with a relative density of 98.8% of the theoretical density. The density of the sintered samples increased to the maximum 99.3% of the theoretical density with the addition of 0.1 wt. %Sn powder to the 2024 pre-alloyed powder. The maximum density was obtained at 15% liquid volume fraction for both powder mixtures.
B. Mehrabi, M. Abdellatif, F. Masoudi,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: Ore mineral characterization and various experimental testwork were carried out on Asian Abe-Garm dolomite, Qazvin province, Iran. The testwork consisted of calcining, chemical characterization, LOI determination, and reduction tests on the calcined dolomite (doloma), using Semnan ferrosilicon. Calcining of dolomite sample was carried out at about 1400 ºC in order to remove the contained CO2, moisture, and other easily volatilised impurities. The doloma was milled, thoroughly mixed with 21% Semnan ferrosilicon and briquetted in hand press applying 30 MPa pressure. The briquettes were heated at 1125-1150 ºC and 500Pa in a Pidgeon-type tube reactor for 10-12 hours to extract the magnesium. Ferrosilicon addition, relative to doloma, was determined based on the chemical analyses of the two reactants using Mintek’s Pyrosim software package. Magnesium extraction calculated as 77.97% and Mg purity of 96.35%. The level of major impurities in the produced magnesium crown is similar to those in the crude metal production.
F. Foroutan, J. Javadpou, A. Khavandi, M. Atai, H. R. Rezaie,
Volume 8, Issue 2 (6-2011)
Abstract

Abstract: Composite specimens were prepared by dispersion of various amounts of nano-sized Al2O3 fillers in a monomer system containing 60% Bis-GMA and 40% TEGDMA. For comparative purposes, composite samples containing micrometer size Al2O3 fillers were also prepared following the same procedure. The mechanical properties of the light- cured samples were assessed by three-point flexural strength, diametral tensile strength, and microhardness tests. The results indicated a more than hundred percent increase in the flexural strength and nearly an eighty percent increase in the diametral tensile strength values in the samples containing nano-size Al2O3 filler particles. It is interesting to note that, this improvement was observed at a much lower nano-size filler content. Fracture surfaces analyzed by scanning electron microscopy, indicated a brittle type of fracture in both sets of specimens.
S. Ghafurian, S. H. Seyedein, M. R. Aboutalebi, M. Reza Afshar,
Volume 8, Issue 3 (9-2011)
Abstract

Abstract: Microwave processing is one of the novel methods for combustion synthesis of intermetallic compounds and
composites. This method brings about a lot of opportunities for processing of uniquely characterized materials. In this
study, the combustion synthesis of TiAl/Al2O3 composite via microwave heating has been investigated by the
development of a heat transfer model including a microwave heating source term. The model was tested and verified
by experiments available in the literature. Parametric studies were carried out by the model to evaluate the effects of
such parameters as input power, sample aspect ratio, and porosity on the rate of process. The results showed that
higher input powers and sample volumes, as well as the use of bigger susceptors made the reaction enhanced. It was
also shown that a decrease in the porosity and aspect ratio of sample leads to the enhancement of the process.
E. Najafi Kani, A. Allahverdi,
Volume 8, Issue 3 (9-2011)
Abstract

Shrinkage behavior of a geopolymer cement paste prepared from pumice-type natural pozzolan was studied
by changing parameters of chemical composition including SiO2/Na2O molar ratio of activator and total molar ratios
of Na2O/Al2O3, and H2O/Al2O3. For investigating the effect of curing conditions on shrinkage, hydrothermal curing
was also applied. The obtained results clearly revealed the governing effect of chemical composition on shrinkage.
Mixes with different Na2O/Al2O3 molar ratios exhibited different shrinkage behavior due to variations made in
SiO2/Na2O molar ratio. Application of hydrothermal curing after a 7-day period of precuring in humid atmosphere
also showed strong effect on shrinkage reduction.
F. Kashaninia, H. Sarpoolaky, A. R. Bagheri, R. Naghizadeh, M. Zamanipour,
Volume 8, Issue 4 (12-2011)
Abstract

Abstract: There have been lots of studies to control the poor hydration resistance of dolomite refractories one of the
most effective solutions has been the addition of magnesia to doloma. Using a co-clinker of magnesia-doloma as a
starting material would provide more homogeneity in the properties of the product and has been published recently.
On the other hand, addition of iron oxide to doloma has been found to increase the hydration resistance. In this paper,
the effect of iron oxide addition on hydration phase analysis and microstructure of two different magnesia- doloma
samples, one with CaO content of 25 wt% and the other one with that of 35 wt% has been investigated. Ten samples
were prepared by pressing followed by firing at 1750 ºC for 3hrs. Results showed that the hydration resistance of the
samples improved by decreasing the CaO content, because CaO is much more prone to hydration comparing to MgO.
Besides, iron oxide addition lead to the formation of iron-containing phases which increased the hydration resistance
of the samples both by capsulating the CaO and MgO grains and by promoting the liquid phase sintering.
A. Allahverdi, E. Najafi Kani, M. Fazlinejhad,
Volume 8, Issue 4 (12-2011)
Abstract

Abstract: The linear expansion, early-age compressive strength and setting times of the binary mixtures of gypsum and Portland cement clinkers of relatively low C3A-contents were investigated. For this reason, type 1, 2, and 5 of Portland cement-clinkers were selected and a number of binary mixtures were designed. At relatively lower percentages of gypsum (about 5%), the early strength behavior is improved. Results obtained for compressive strength of mixtures with 5% gypsum confirm the possibility of achieving 28- and 90-day compressive strengths up to values higher than 100 MPa and 130 MPa, respectively. At relatively higher percentages of gypsum (more than 25%), excessive expansion caused by ettringite formation results in the formation of micro-cracks effectively weakening the strength behavior. The work suggests that type S expansive cements could be produced from Portland cement clinkers of relatively low C3Acontents.
S. Janitabar Darzi, A. R. Mahjoub, A. R. Nilchi, S. Rasouli Garmarodi,
Volume 8, Issue 4 (12-2011)
Abstract

TiO2/SiO2 nanocomposite with molar ratio 1:1 was synthesized by a free calcination sol-gel method using titanium tetra chloride and tetraethylorthosilicate as raw materials. In the composite, TiO2 nanocrystals are highly dispersed in the amorphous SiO2 matrix and the mater showed size quantization effect arising from the presence of extremely small titanium oxide species having a low coordination number. Thermal phase transformation studies of the as-prepared composite were carried out by means of X-ray diffraction (XRD) patterns and thermogravimetry–differential scanning calorimetry (TG–DSC) analyses. The studies showed existence of anatase phase in all the tested temperatures. When temperature exceeds 400°C, brookite phase was formed beside anatase phase. At 950°C amorphous silica matrix was transformed to crystobalite and brookite phase disappeared. Finally, small peaks of rutile phase were detectable at 1100°C.
P. Samadi, M. Reza Afshar, M. R. Aboutalebi, S. H. Seyedein,
Volume 9, Issue 1 (3-2012)
Abstract

Electrochemical coating processes are significantly affected by applied magnetic fields due to the generation of electromagnetic forces. The present research work has been undertaken to study the effect of coating parameters such as current density and alumina concentration on the characteristics of Ni-Al2O3 composite coating under static magnetic field. Ni-Al2O3 composite coating was applied on a mild steel substrate using conventional Watts solution containing Al2O3 particles with and without magnetic field. The coating microstructure and Al2O3 particle density in the coating layer were examined by scanning electron microscopy (SEM). It was found that the applied magnetic field made the coating structure finer and leads to the increases of the particle content in the coating. However, the results confirmed that the magnetic forces inversely affected the particle density in the coating at higher current density than that of normal coating process.


Y. Safaei-Naeini, M. Aminzare, F. Golestani-Fard, F. Khorasanizadeh, E. Salahi,
Volume 9, Issue 1 (3-2012)
Abstract

Ultraviolet–Visible (UV–Vis) spectroscopy was used, in the current investigation, to explore the dispersion and stability of titania nanoparticles in an aqueous media with different types of dispersants. Hydrochloric and nitric acids as well as ammonia were used to determine the stability of the suspension in the acidic region (pH=2.5) and basic area (pH=9.5), respectively. In addition, for measuring sustainability of suspension and creating steric, and electrosteric repulsive forces, ethylene glycol and ethylene glycol plus ammonia were employed, respectively. UV–V is
spectrometry was applied to realize the effect of nano titania concentrations and different types of dispersants of samples containing different amounts of nano titania and different types of dispersants on stability of TiO2-containing suspensions. In addition, the stability of dispersion could be evaluated in colloidal mixtures containing ethylene glycol plus ammonia. It was demonstrated that the mixtures containing ethylene glycol plus ammonia were stable over a period of 4 days. To support the UV–Vis results, other techniques such as atomic force microscopy (AFM) and scanning electron microscopy (SEM) were employed to study the degree of agglomeration of titania nanoparticles in terms ofmorphology and size.
W. Orlowicz, M. Tupaj, M. Mróz, J. Betlej, F. Ploszaj,
Volume 9, Issue 1 (3-2012)
Abstract

Abstract: This study presents the research results of effect that refining process has on porosity and mechanical properties of high pressure die castings made of AlSi12S alloy. The operation of refining was carried out in a melting furnace with the use of an FDU Mini Degasser. Mechanical properties (UTS, YS, Elongation, Brinell Hardness) were assessed on samples taken from high pressure die castings. The effect of molten metal transfer operation and the time elapsing from completion of the refining process on the alloy mechanical properties was determined.
M. J. Tafreshi, B. Dibaie, M. Fazli,
Volume 9, Issue 1 (3-2012)
Abstract

Abstract: A thermodynamic model was used to find out the optimum temperature for the growth of ZnS single crystals in closed ampoules by chemical vapor transport technique. Based on this model 1002 °C was found to be optimum temperature for 2 mg/cm3 concentration of transporting agent (iodine). ZnS Crystals were grown in optimum (1002 °C) and non-optimum (902 °C and 1102 °C) temperatures. The composition structure and microstructure of the grown crystals were studied by Atomic absorption spectroscopy, X-ray diffraction and Scanning electron microscopy measurements. Properties of the grown crystals were correlated to the growth conditions especially a stability in mass transport along the closed tube length.
H. Ashrafi, M. Mahzoon, M. Shariyat,
Volume 9, Issue 1 (3-2012)
Abstract

Abstract: The boundary value problems involving contact are of the great importance in industries related to mechanical and materials engineering. These mixed problems are challenging since a priori unknown deformed surface of the material contacting a rigid indenter is to be determined as a part of the solution. Anisotropic solids represent an important class of engineering materials including crystals, woods, bones, thin solid films, polymer composites, etc. Contact analysis of an anisotropic media, however, is more difficult and is developed less completely in the literature. In this work, both analytical and computational studies of the contact treatment of a semi-infinite orthotropic material indented by a rigid spherical indenter have been considered in two different sections. This approach can be applied to determine the interfacial contact area and pressure distribution for three-dimensional orthotropic materials, and can then be used to calculate the resulting stress and strain fields of the media. Results presented herein can serve as benchmarks with which to compare solutions obtained by ANSYS commercial package.


A. Fardi Ilkhchy, N. Varahraam, P. Davami,
Volume 9, Issue 1 (3-2012)
Abstract

Abstract: During solidification and casting in metallic molds, the heat flow is controlled by the thermal resistance at the casting-mold interface. Thus heat transfer coefficient at the metal- mold interface has a predominant effect on the rate of heat transfer. In some processes such as low pressure and die-casting, the effect of pressure on molten metal will affect the rate of heat transfer at least at initial steps of solidification. In this study interfacial heat transfer coefficient at the interface between A356 alloy casting and metallic mold during the solidification of casting under pressure were obtained using the IHCP (Inverse Heat Conduction Problem) method. Temperature measurements are then conducted with the thermocouples aligned in the casting and the metallic mold. The temperature files were used in a finite-difference heat flow program to estimate the transient heat transfer coefficients. The peak values of heat transfer coefficient obtained for no pressure application of A356 alloy is 2923 and for pressure application is 3345 . Empirical equation, relating the interfacial heat transfer coefficient the applied pressure were also derived and presented.

Page 5 from 20     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb