Search published articles


Showing 2 results for Naimi-Jamal

Sh. Keshavarz, M. R. Naimi-Jamal, M.gh. Dekamin, Y. Izadmanesh,
Volume 17, Issue 4 (December 2020)
Abstract

In this work, the facile synthesis and identification of hexylmethylimidazolium bis(trifluoromethyl­sulfonyl)­amide ([HMIM]­TFSA) and hexylmethylimidazolium triethyltrifluorophosphate ([HMIM]FAP) ionic liquids (ILs), as multifunctional and multipurpose gear oil additives, is introduced. The tribological tests indicated that both ([HMIM]TFSA) and ([HMIM]FAP) ILs demonstrate antiwear/extreme pressure properties (AW/EP) to the gear oils by preventing wear and scar of the lubricated system at low and high temperatures. [HMIM]TFSA provided superior performance in comparison to [HMIM]FAP. Because of the presence of heteroaromatic imidazole moiety in the ILs structure, the prepared ILs also imparted anticorrosion, antioxidant, and anti-rust properties to the lubricant. All these observations confirmed that the ILs are single component multifunctional and multipurpose oil additives. In addition, due to avoiding the use of toxic and harmful elements in the preparation of ILs make the fabricated oils potential candidates for green lubricants.
Leila Taghi-Akbari, Mohammad Reza Naimi-Jamal, Shervin Ahmadi,
Volume 20, Issue 4 (December 2023)
Abstract

Two-dimensional molybdenum disulfide (MoS2) is used as a promising flame retardant and smoke suppressant nano additive in polymer composites due to its high thermal stability and layered structure. In this study, thermoplastic polyurethane (TPU) was melt-blended with MoS2 (1wt. %) and a halogen-free intumescent flame retardant (IFR) system. The IFR system consisted of ammonium polyphosphate (APP), Melamine polyphosphate (MPP), and pentaerythritol (PER), with a total amount of 25 wt. %. The TPU/IFR/MoS2 composite exhibited outstanding flame-retardant properties, achieving a UL-94 V-0 rating and a limiting oxygen index (LOI) value of 34%. Reaction-to-fire performance of the TPU/IFR/MoS2 composite was evaluated by cone calorimeter test (CCT). The CCT results indicated high flame-retardant efficiency and considerable smoke suppression performance, along with a significant decrease in the peak heat release rate (PHRR: 65.9%), peak smoke production rate (PSPR: 65.6%), and peak CO production (PCOP: 60.7%) compared to the neat TPU. The significant improvement in fire performance of TPU composite was mainly attributed to the effects of the physical barrier of MoS2 and catalytic carbonization of the IFR system. These resulted in forming an intumescent compact carbonized layer during the combustion, effectively restricting dripping. The continuous structure of the residual char was revealed by FESEM. Thermogravimetric analysis (TGA) indicated improved thermal behavior of the TPU composite in high temperatures. This work provides an effective method to improve the reaction to fire of TPU composites by incorporating traditional IFRs and MoS2, resulting in enhanced fire safety.

 
 

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb