Search published articles



Mohammad Alipour,
Volume 20, Issue 1 (3-2023)
Abstract

The effect of Strain-Induced Melt-Activated (SIMA) Process, ultrasonic treatment (UST) and Al-5Ti-1B refiner on the microstructure and globularity of Al–15%Mg2Si composite was studied. Deformation of 25% were used. After deformation the samples were heated at 560, 580 and 595 °C for 5, 10, 20 and 40 min. The composite was treated with different amounts of the Ti concentrations and ultrasonic treatment with different power. Microstructural study was carried out on the alloy. It was observed that SIMA process, ultrasonic treatment and Al-5Ti-1B refiner has caused the globular morphology of Mg2Si particles. The results showed that for the desired microstructures of the alloy during SIMA process, the optimum temperature and time are 595 °C and 20 min respectively. Optimum amount of Ti refiner is 1 wt.% and power for UST is 1800W. After applying the SIMA process, Al-5Ti-1B master alloy and ultrasonic treatment, the strength and engagement have increased. This means that tensile strength increases from 251 MPa to 303 MPa and elongation percentage improves from 2.1 to 3.4, respectively.
 
Mohammad Alipour,
Volume 20, Issue 2 (6-2023)
Abstract

This study was undertaken to investigate the influence of graphene nano sheets on the structural characteristics and dry sliding wear behaviour of Al-5Cu-1Mg aluminium alloy. The optimum amount of GNPs for proper grain refining was selected as 0.5 wt.%. T6 heat treatment was applied for all specimens before wear testing. Significant improvements in wear properties were obtained with the addition of GNPs combined with T6 heat treatment. Dry sliding wear performance of the alloy was examined in normal atmospheric conditions. The experimental results showed that the T6 heat treatment considerably improved the resistance of Al-5Cu-1Mg aluminium alloy to the dry sliding wear. The results showed that dry sliding wear performance of without T6 microstructure specimens was a lower value than that of with T6 specimens.
 
Maryam Salehi, Milad Dadashi, S. Parsa Kashani Sani,
Volume 20, Issue 2 (6-2023)
Abstract

In the present study, bulk refined-structured Al 5083 alloy with high mechanical properties was successfully fabricated by hot consolidation process of nanostructured melt- spun flakes. The influence of cooling rate and pressing conditions on the microstructure and mechanical properties of the alloy were investigated using X-ray diffractometer (XRD), optical microscopy (OM), field emission scanning electron microscopy (FE-SEM), microhardness, and compression tests. Rapid solidification combined with the hot consolidation at T=753 K (480 °C) and P= 800 MPa for 20 min produced a bulk sample with the desirable bonding, good microhardness (184.2±12.4 HV), and high strength (273±8 MPa) combined with 7 pct. fracture strain. These amounts are 78.6±5.1 HV, 148 ±9 MPa and about 5 pct. for the as-cast sample. Microstructural refinement during the controlled consolidation of nanostructure rapidly- solidified flakes contributes to such high mechanical properties of the bulk sample.

 
Ayça Tanrıverdi, Saniye Tekerek,
Volume 20, Issue 3 (9-2023)
Abstract

In this study, zinc chloride (ZnCl) was used as a precursor chemical to form boron reinforced zinc oxide (ZnO:B) particles. The supercapacitor performance of the reduced graphene oxide/boron reinforced zinc oxide (RGO/ZnO:B) composite electrodes produced by hydrothermal methods, and the impact of different boron doping ratios on the capacitance, were both examined. The characterization of the RGO/ZnO:B composites containing 5%, 10%, 15% and 20% boron by weight were performed using X-Ray diffraction (XRD) and scanning electron microscopy (SEM). The capacitance measurements of the electrodes produced were conducted in a 6 M KOH aqueous solution with a typical three electrode setup using Iviumstat potentiostat/galvanostatic cyclic voltammetry. The specific capacitance value of the 20% reinforced RGO/ZnO:B composite electrode was 155.88 F/g, while that of the RGO/ZnO composite electrode was 36.37 F/g. According to this result, the capacitance increased four-fold with a 20% boron doping concentration. Moreover, a longer cycle performance was observed for the RGO/ZnO:B electrodes with higher boron doping concentrations.
 
Saeedeh Mansoury, Maisam Jalaly, Mohammad Khalesi Hamedani,
Volume 20, Issue 4 (12-2023)
Abstract

In this study, an epoxy-based nanocomposite reinforced with copper oxide-graphene oxide hybrid was investigated. Initially, the hybrid powder of CuO–GO with a weight ratio of 9:1 was prepared. The hybrid filler with different weight percentages ranging from 0.1–0.5 was used to reinforce the epoxy resin. The prepared samples were analyzed using XRD, FTIR, FESEM, TEM, and tensile testing. According to the XRD results and SEM images, the hybrid powder was successfully prepared, and the mechanical testing results showed an improvement in tensile strength in the composite samples. The best composite sample in terms of tensile strength was the one containing 0.3 wt% of hybrid reinforcement, which exhibited a 73% increase in strength compared to the neat resin sample.
Pravin Jadhav, R.s.n Sahai, Deepankar Biswas, Asit Samui,
Volume 20, Issue 4 (12-2023)
Abstract

The present work deals with the effect of Multi-walled Carbon Nanotube (MWCNT) and functionalized (carboxyl and amine) MWCNT on the mechanical properties of the PAEK (Poly Aryl Ether Ketone) polymer composite. The MWCNT and functionalized (carboxyl and amine) MWCNT concentration varied as 0.25, 0.5 and 0.75 weight percentages. Compositeswere prepared by using a melt compounding method using a twin-screw extruder and all testing samples were prepared using an injection molding machine as per American Society for Testing and Materials (ASTM) standards. Samples were tested for tensile strength, impact strength, flexural strength, heat deflection temperature, hardness, and density. There is an increase in the tensile strength, impact strength, flexural strength, and heat deflection temperature, with percentage increase in filler loading up to 0.5 %, followed by decrease in it with higher filler loading. The increase is maximum for amine functionalized MWCNT.

 
Tanaji Patil, S M Nikam, R S Kamble, Rahul Patil, Mansing Takale, Satish Gangawane,
Volume 21, Issue 1 (3-2024)
Abstract

The trimanganese tetraoxide (Mn3O4) nanostructured thin films doped with 2 mol % of nickel (Ni) and molybdenum (Mo) ions were deposited by a simple electrophoretic deposition technique. The structural, optical, and morphological studies of these doped thin films were compared with pure Mn3O4 thin films. X-ray diffraction (XRD) confirmed the tetragonal Hausmannite spinel structure. The Fourier transform infrared spectroscopy (FTIR) provided information about the molecular composition of the thin films and the presence of specific chemical bonds. The optical study and band gap energy values of all thin films were evaluated by the UV visible spectroscopy technique. The scanning electron microscopy (SEM) illustrated the morphological modifications of the Mn3O4 thin films due to doping of the nickel and molybdenum ions. The Brunauer Emmett Teller (BET) method has confirmed the mesoporous nanostructure and nanopores of the thin films. The supercapacitive performance of the thin films was studied by cyclic voltammetry (CV), and galvanostatic charge discharge (GCD) techniques using the three-electrode arrangement. An aqueous 1M Na2SO4 electrolyte was used for the electrochemical study. The 2 mol % Ni doped Mn3O4 thin film has shown maximum specific capacitance than pure and Mo doped Mn3O4 thin films. Hence, this study proved the validity of the strategy - metal ion doping of Mn3O4 thin films to develop it as a potential candidate for electrode material in the futuristic energy storage and transportation devices.
Samrat Mane,
Volume 21, Issue 1 (3-2024)
Abstract

In this research work, Cadmium Sulphide thin film deposited on to glass substrate in a non-aqueous medium at 80°C. The various physical preparative parameters and the deposition conditions, such as the deposition time and temperature, concentrations of the chemical species, pH, speed of mechanical stirring, etc., were optimized to yield good quality films. The as-prepared sample is tightly adherent to the substrate's support, less smooth, diffusely reflecting and was analyzed for composition. The synthesized film is characterized using X- ray diffraction (XRD), electrical and optical properties. It appears that the composites are rich in Cd. The grown CdS thin film had an orange-red color. A band gap of CdS thin film is 2.41 eV.  The average crystallite size of the CdS film was 21.50 nm. The resistivity of the CdS thin film is about 5.212 x 105 W cm.
 
Sandesh Jirage, Kishor Gaikwad, Prakash Chavan, Sadashiv Kamble,
Volume 21, Issue 1 (3-2024)
Abstract

The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.
The Cu2ZnSnS4 (CZTS) thin film is newly emerging semiconductor material in thin film solar cell industry. The CZTS composed of economical, common earth abundant elements. It has advantageous properties like high absorption coefficient and best band gap. Here we have applied low cost chemical bath deposition technique for synthesis of CZTS at low temperature, acidic medium and it’s characterization. The films were characterized by different techaniques like X-Ray diffraction, Raman, SEM, Optical absorbance, electrical conductivity and PEC study. The X-Ray diffraction, Raman scattering techniques utilized for structural study. The XRD revels kasterite phase and nanocrystalline nature of CZTS thin films. These results and its purity confirmed further by advanced Raman spectroscopy with 335 cm-1 major peak. The crystallite size which was found to be 50.19 nm. The optical absorbance study carried by use of UV-Visible spectroscopy analyses its band gap near about 1.5 eV and its direct type of absorption. The electrical conductivity technique gives p-type of conductivity. The scanning electron microscopy (SEM) study finds it’s rock like unique morphology. The EDS technique confirms its elemental composition and it’s fair stoichiometry. The analysis of PEC data revealed power conversion efficiency-PCE to 0.90%.

Muhammad Shahzad Sadiq, Muhammad Imran, Abdur Rafai, Muhammad Rizwan,
Volume 21, Issue 2 (6-2024)
Abstract

With increasing energy demand and depletion of fossil fuel resources, it is pertinent to explore the renewable and eco-friendly energy resource to meet global energy demand. Recently, perovskite solar cells (PSCs) have emerged as plausible candidates in the field of photovoltaics and considered as potential contender of silicon solar cells in the photovoltaic market owing to their superior optoelectronic properties, low-cost and high absorption coefficients. Despite intensive research, PSCs still suffer from efficiency, stability, and reproducibility issues. To address the concern, the charge transport material (CTM) particularly the electron transport materials (ETM) can play significant role in the development of efficient and stable perovskite devices. In the proposed research, we synthesized GO-Ag-TiO2 ternary nanocomposite by facile hydrothermal approach as a potential electron transport layer (ETL) in a regular planar configuration-based PSC. The as synthesized sample was examined for morphological, structural, and optical properties using XRD, and UV-Vis spectroscopic techniques. XRD analysis confirmed the high crystallinity of prepared sample with no peak of impurity. The optimized GO-Ag-TiO2 ETL exhibited superior PCE of 8.72% with Jsc of 14.98 mA.cm-2 ,Voc of 0.99 V, and a fill factor of 58.83%. Furthermore, the efficiency enhancement in comparison with reference device is observed which confirms the potential role of doped materials in enhancing photovoltaic performance by facilitating efficient charge transport and reduced recombination. Our research suggests a facile route to synthesize a low-cost ETM beneficial for the commercialization of future perovskite devices.
 
Alireza Zibanejad-Rad, Ali Alizadeh, Seyyed Mehdi Abbasi,
Volume 21, Issue 2 (6-2024)
Abstract

Pressureless sintering was employed at 1400 °C to synthesize Ti matrix composites (TMCs) reinforced with in-situ TiB and TiC reinforcements using TiB2 and B4C initial reinforcements. The microstructure and wear behavior of the synthesized composites were evaluated and compared and the results showed that B4C caused the formation of TiB-TiC in-situ hybrid reinforcements in the Ti matrix. Also, TiB was in the form of blades/needles and whiskers, and TiC was almost equiaxed. Moreover, the volume fraction of the in-situ formed reinforcement using B4C was much higher than that formed using TiB2. In addition, although the hardness of the B4C-synthesized composites was higher, the composite synthesized using 3 wt.% TiB2 exhibited the highest hardness (425 HV). The wear test results showed that the sample synthesized using 3 wt.% TiB2 showed the lowest wear rate at 50 N, mainly because of its higher hardness. The dominant wear mechanism in the samples synthesized using 3 wt.% B4C was abrasive and delamination at 50 N and 100 N, respectively while in the samples synthesized 3 wt.% TiB2, a combination of delamination and adhesive wear and adhesive wear was ruling, respectively.

 
Satish Ahire, Ashwini Bachhav, Bapu Jagdale, Thansing Pawar, Prashant Koli, Dnyaneshwar Sanap, Arun Patil,
Volume 21, Issue 2 (6-2024)
Abstract

Hybrid photocatalysts, comprising both inorganic and organic polymeric components, are the most promising photocatalysts for the degradation of organic contaminants. The nanocomposite, Titania-Polyaniline (TiO2-PANI) was synthesized using the chemical oxidative polymerization method. Various characterization techniques were employed to assess the properties of the catalysts. The ultraviolet diffuse reflectance spectroscopy (UV-DRS) analysis revealed that the TiO2 absorbs only UV light while the TiO2-PANI nanocomposite absorbs light from both UV and visible regions. The X-ray diffraction (XRD) results confirmed the presence of TiO2 (anatase) in both TiO2 nanoparticles and TiO2-PANI (Titania-Polyaniline)  nanocomposite. The phases of the catalysts were verified through Raman, TEM, and SAED techniques where all results are in good agreement with each other. The average crystallite size of TiO2 nanoparticle and TiO2-PANI nanocomposite were 13.87 and 10.76 nm. The thermal stability of the catalysts was assessed by the Thermal gravimetric analysis (TGA) technique. The order of the thermal stability is TiO2 > TiO2-PANI > PANI.  The crystal lattice characteristics were confirmed using Transmission electron microscopy (TEM). The surface area measurements were confirmed from the Brunauer-Emmett-Teller (BET) study and were employed for the evaluation of the photocatalytic efficiency of both, TiO2 nanoparticles and TiO2-PANI nanocomposite catalysts. The energy dispersive spectroscopy (EDS) study was employed for elemental detection of the fabricated materials. While Raman spectroscopy was employed for the chemical structure and the phase characteristics of the materials. The standard conditions for the degradation of the CF dye were 8 g/L of catalyst dosage, 20 mg/L of dye concentration, and a pH of 7. The TiO2-PANI nanocomposite exhibited superior efficiency as compared to pure TiO2 nanoparticles, achieving almost 100 % degradation in just 40 minutes.  

Page 1 from 1     

© 2022 All Rights Reserved | Iranian Journal of Materials Science and Engineering

Designed & Developed by : Yektaweb