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Abstract: This paper investigated the optimization, modeling, and effect of welding parameters on the tensile shear 
load-bearing capacity of double pulse resistance spot-welded DP590 steel. Optimization of welding parameters was 
performed using the Taguchi design of experiment method. A relationship between input welding parameters i.e., 
second pulse welding current, second pulse welding current time, and first pulse holding time and output response 
i.e, tensile shear peak load was established using regression and neural network. Results showed that the maximum 
average tensile shear peak load of 26.47 was achieved at optimum welding parameters i.e., second pulse welding 
current of 7.5 kA, second pulse welding time of 560 ms, and first pulse holding time of 400 ms. It was also found 
that the ANN model predicted the tensile shear load with higher accuracy than the regression model.  

Keywords: Resistance spot welding, Taguchi method, Artificial neural network, Regression model, Tensile shear 
load. 

 

1. INTRODUCTION 

Dual-phase (DP) steels are a type of advanced 
high-strength steel (AHSS) that exhibits high 
strength and ductility. The combination of these 
outstanding mechanical properties is attributable 
to two-phase microstructure DP steels, which 
consist of a soft ferrite embedded with hard 
martensite [1]. Resistance spot welding (RSW) is 
the most commonly utilized welding technology 
for joining vehicle components. A typical modern 
vehicle has several thousand spot welds. The 
ability of a vehicle structure to protect its 
passengers from injury in the event of a collision 
is heavily reliant on the integrity and mechanical 
performance of spot welds. A spot weld acts as a 
fold initiator during a collision, transmitting load 
to automobile assembly. Therefore, the quality of 
the resistance spot welds in terms of mechanical 
performance is crucial to the overall integrity and 
reliability of a vehicle [2].  
The most common problem encountered in 
resistance spot welds of automotive steels is 
interfacial failure (IF) or partial interfacial failure 

(PI) combined with the reduced mechanical 
performance of the welded joint. During RSW, 
the liquid metal cools at a rate of roughly 105°C/s; 
due to this high cooling rate, a hard and brittle 
martensite structure is produced in the weld 
nugget [3]. This hardened microstructure in the 
nugget causes an interfacial failure which allows 
crack propagation through the weld centerline and 
diminishes the mechanical performance of the 
welded joint, particularly in terms of load bearing 
and energy absorption capacity. Tempering the 
martensitic structure is essential to suppress 
brittle interfacial fracture. Postweld tempering via 
applying a secondary pulse current after the 
primary/first melting pulse current can alleviate 
the risk of high sensitivity to interfacial fracture 
[4]. Although some studies [3-5] have been 
carried out to explore double pulse RSW of high-
strength steels, a closer look at the literature 
reveals several gaps and shortcomings, including 
defining the optimum set of secondary pulse 
welding process parameters because the slightest 
change in the material composition and sheet 
thickness influences the selection of optimum 
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process parameters. The success of the postweld 
tempering treatment is highly dependent on 
precisely controlling the amount of heat input, 
which is influenced by the secondary pulse 
welding current, secondary pulse welding time, 
and electrode holding time between primary and 
secondary pulses. Identifying the optimal welding 
conditions for achieving the desired weld quality 
through trial and error is costly and time-
consuming. As a result, a precise modeling 
technique for forecasting weld quality is 
necessary, thus saving time and resources.  
Taguchi design of experiment (DOE) method has 
gained popularity recently due to its robust 
approach to optimizing the welding process 
parameters [6, 7]. In this method, the parameters 
that influence process outcome(s) are placed in 
different rows of a constructed orthogonal array 
(OA), and the experiments are carried out in line 
with the OA. Taguchi's method adopts fractional 
factorial rather than full factorial, allowing for the 
simple creation of experimental trials with a large 
number of factors that vary on a few levels. The 
mean and variance of the response are then 
combined to form a single performance metric 
known as the signal-to-noise (S/N) ratio [8]. 
Taguchi's DOE method has numerous 
advantages; however, when used in practice, the 
method has some limitations. When the given 
parameters are continuous, the Taguchi technique 
is unable to determine the actual optimal values 
because it only addresses discrete parameters. 
Artificial neural networks (ANN) are one of the 
most commonly used modeling techniques for 
predicting output responses even with continuous 
parameters. The ANN technique with a nonlinear 
function can accurately represent the complex 
relationship between inputs and outputs [9]. The 
use of ANN in the modeling of manufacturing 
processes has grown in recent years, owing to its 
ability to extract the necessary information from 
the input data. The use of ANN in the welding 
process, in particular, has been an enormous 
success. Bharathi Kannan et al. [10] employed 
ANN successfully to obtain the optimal laser 
welding parameters for 1 mm thick NiTinol 
sheets. Arunchai et al. [11] used ANN to find the 
optimum parameters for maximum tensile shear 
strength of resistance spot welded dissimilar 
thickness aluminum alloy. Babu et al. [12] carried 
out parameter optimization using ANN of friction 
stir welding of cryo-rolled aluminum alloy to 

obtain weld joints with maximum strength. 
Although using ANNs allows for the 
development of high-performance models, 
determining the appropriate training and 
architectural parameters of an ANN remains a 
difficult task. These parameters are typically 
determined through a trial and error-procedure. 
According to the authors' knowledge, no previous 
works define the ANN or regression model 
development to predict the spot weld joint 
strength made via double pulse RSW. The present 
study aims to develop regression and ANN 
models using a novel method i.e., based on 
Taguchi-optimized data to ensure the best weld 
quality in terms of maximum tensile shear load 
carrying capacity. 

2. MATERIALS CHARACTERIZATION 

In the present investigation, galvanized dual-
phase (DP590) steel sheet is used. The chemical 
composition of the steel was determined using an 
optical spark emission spectrometer. The 
composition (wt %) of the DP590 steel is C 
(0.099), Mn (1.70), Si (0.388), S (0.007), Al 
(0.0301), and the remaining is Fe. The tensile 
strength, yield strength, and ductility of DP590 
steel are 694 MPa, 440 MPa, and 11.58%, 
respectively. Fig. 1 depicts the microstructure of 
as received condition steel. DP590 steel sheets 
with a thickness of 1.8 mm were cut into 40 x 125 
mm strips and then overlap-spot welded. The 
geometry and dimensions of the lap shear tensile 
specimen are shown in Fig. 2. 
Resistance spot welding was performed using a 
high-frequency alternating-current type semi-
automatic welding machine. Truncated cone-
shaped copper-alloy electrodes with an 8 mm face 
diameter were used for welding. A double pulse 
welding (DPW) schedule was employed for 
making spot welds. The DPW schedule consists of 
two cycles i.e. melting pulse cycle (MPC) and plus 
post-weld heating cycle (PWHC). Fig. 3 shows the 
schematic illustration of the welding scheme used in 
the present investigation. The aim of MPC is to 
produce a target nugget size following D= 5√t 
(where t is sheet thickness and D is the width of weld 
nugget) criterion. The aim of PWHC is to reheat the 
weld to alter the microstructure and decrease the 
brittleness of the weld nugget. 
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Fig. 1. SEM micrograph exhibiting microstructure of 

DP590 steel 

Table 1 shows the detailed parameters and levels 
of the double pulse RSW.  
Tensile shear peak load is considered as the 
output/quality characteristic while secondary 
pulse welding current, secondary pulse welding 
time, and primary/first pulse holding time are 
chosen as input process parameters. From a 
previous study [14], it is found that the secondary 

pulse welding current and welding time control 
the amount of heat supplied to the welding zone, 
while the 1st pulse holding time influence the 
cooling rate of the weld zone. 

 
Fig. 2. Geometry and dimension of lap shear tensile 

specimen 

Table 1. Parameters and their levels used for double 
pulse RSW 

Electrode force (kN) 4 
Squeeze time (ms) 500 

1st pulse welding current 
(kA) 7.5 

1st pulse welding time (ms) 560 
1st pulse holding time (ms) 400, 460, 520, 580 

2nd pulse current (kA) 3, 4.5, 6, 7.5 
2nd pulse welding time (ms) 140, 280, 420, 580 
2nd pulse holding time (ms) 600 

 
Fig. 3. Schematic illustration of double pulse RSW 

Ferrite Martensite
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Based on the significant influence on the weld 
thermal cycle, three input process parameters are 
selected. Table 2 shows the selected input process 
parameters and their levels. 
Taguchi method was used to design the 
experiments. An L16 OA was chosen, and all 
experiments were carried out according to the 
designed arrays. Taguchi’s L16 OA was chosen 
based on the degrees of freedom (DOF). In 
Taguchi’s OA design, the degrees of freedom of 
each factor are equal to n-1, where n is the total 
number of levels. The DOF of each factor is three 
(no. of levels minus one i.e., 4-1= 3), and the total 
DOF is 2×4= 8. The total DOF of OA should be 
greater than or equal to the total DOF of the 
factors [13]. The total DOF of L16 OA is fifteen 
(i.e., 16-1= 15); thus, the selected OA is suitable 
for the investigation and capable of providing full 
statistical evidence of all the parameters that 
affect the quality. Table 3 shows the layout of the 
L16 OA and the arrangement of parameters 
assigned to each column. 
After completing RSW experiments, quasi-static 
tensile shear tests were performed using a 
servohydraulic universal testing machine (model: 
Amsler HA50 Zwick Roell GmbH & Co, KG, 
Germany) at a cross-head speed of 10 mm/min. 
The tensile shear peak load was recorded from 
load-displacement plots of specimens. Two 
replications are used for each experimental run 
corresponding to each row of the L16 OA. For 
microstructural examination, specimens were cut 
from the center of the welded joints and prepared 
following standard metallographic methods. The 
microstructure was examined using scanning 
electron microscopy (SEM) (model: TESCAN 
VEGA3, Czech Republic). 

3. RESULTS AND DISCUSSION   

3.1. Evaluation of Tensile Shear Load 
Experimental, regression and ANN-predicted 
results of the tensile shear test are given in Table 
4. Experimental load-displacement plots of all 
specimens are shown in supplementary Fig. S-1. 
The highest average tensile shear peak load of 
26.46 kN is attained by specimen W16, while the 
lowest average tensile shear peak load of 23.79 
kN is attained by specimen W1. 
Fig.4 depicts the failure mode of all specimens, 
which can be easily distinguished by the 
appearance of their fractures. Specimens failed in 
four different ways: interfacial failure (IF), 
partial-interfacial failure (PIF), pullout failure 
(PF), and partial-thickness-partial pullout failure 
(PTPPF). In IF mode, the crack initiated from the 
notch present at the sheet-sheet interface and 
propagated rapidly through the center of a nugget. 
In PIF mode, the fracture first propagated in the 
nugget at approximately 45o to the surface plane 
and then redirected through the thickness 
direction.  
The shear stress at the interface of the two sheets 
controlled the failure in the IF and PIF modes. In 
PF mode, the nugget is pulled out from one sheet. 
In PTPPF mode, a slant crack first propagated 
into the nugget before being redirected through 
the sheet in the thickness direction, resulting in 
the removal of some parts of the mating sheet. 
The tensile stress around the nugget governed the 
occurrence of failure in the PF and PTPPF 
modes [14]. Specimens failed via pullout failure 
exhibit high tensile-shear load-bearing capacity, 
strength, and ductility, and thus are considered 
good welds. 
 

Table 2. Welding parameters and their levels considered for double pulse RSW 

Parameters Symbol Levels 
1 2 3 4 

Secondary pulse welding current (kA) A 3 4.5 6 7.5 
Secondary pulse welding time (ms) B 140 280 420 560 

Primary/first pulse holding time (ms) C 400 460 520 580 

Table 3. DOE based on Taguchi L16 OA 

Parameter Experiment run 
W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 

A 3 3 3 3 4.5 4.5 4.5 4.5 6 6 6 6 7.5 7.5 7.5 7.5 
B 140 280 420 560 140 280 420 560 140 280 420 560 140 280 420 560 
C 400 460 520 580 460 400 580 520 520 580 400 460 580 520 460 400 
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Table 4. Experimental, regression and ANN predicted results of tensile shear load 

Experiment 
No 

Input Parameters Output (Tensile shear peak load)  

A 
(kA) 

B 
(ms) 

C 
(ms) 

Experimental Average of Test 
1 & Test 2 

 (kN) 

Regression 
predicted 

 (kN) 

ANN 
predicted  

(kN) 
Test 1 
(kN) 

Test 2 
(kN) 

W1 3.0 140 400 23.84 23.82 23.83 24.00 23.59 
W2 3.0 280 460 23.93 23.91 23.92 23.80 23.56 
W3 3.0 420 520 23.77 23.61 23.69 23.80 23.61 
W4 3.0 560 580 23.76 23.78 23.77 24.00 23.77 
W5 4.5 140 460 23.79 23.89 23.84 23.66 24.07 
W6 4.5 280 400 23.89 24.51 24.20 24.37 24.14 
W7 4.5 420 580 24.54 25.46 25.00 24.89 24.89 
W8 4.5 560 520 25.76 26.16 25.96 25.64 25.74 
W9 6.0 140 520 23.85 23.89 23.87 24.06 23.86 

W10 6.0 280 580 25.41 25.75 25.58 25.31 25.46 
W11 6.0 420 400 25.28 26.32 25.80 25.24 25.80 
W12 6.0 560 460 26.39 26.03 26.21 26.55 26.19 
W13 7.5 140 580 24.54 25.54 25.04 25.24 25.07 
W14 7.5 280 520 26.04 26.06 26.05 25.92 25.89 
W15 7.5 420 460 26.34 26.22 26.28 26.39 26.24 
W16 7.5 560 400 26.38 26.56 26.47 26.65 26.09 

 
Fig. 4. Photographs showing the failure mode of welds 

3.2. Metallurgical Studies 
The nugget size is the key factor in determining 
the quality of spot welds because it determines the 
failure mode of the weld. In general, the failure 
mode shifts from interfacial to pullout above a 
critical nugget size [15]. In order to obtain PF 
mode in resistance spot welded automotive steels, 
some industrial standards American Welding 
Society (D8.9M) define the equation for the 
critical nugget diameter as D= 4t0.5 (where t is 

sheet thickness), whereas the Japanese Industrial 
Standard (JIS Z3140) endorses a critical nugget 
size based on D= 5t0.5. In the present study, 
although welds are produced with critical nugget 
diameter according to D= 5t0.5 criterion, 
specimens W1, W2, W3, W4, W5, and W9 failed 
in the IF mode, which indicates that conventional 
nugget size criteria merely based on sheet 
thickness do not guarantee PF mode in DP590 
steel resistance spot welds. This is because these 
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standards presume uniform mechanical properties 
across the weldment and do not account for the 
effect of metallurgical variations. Therefore, it is 
important to analyze the metallurgical aspects of 
the welds in detail. Macrostructures and nugget 
size of welded joints are shown in supplementary 
Fig. S2 and Fig. S3, respectively. Fig. 5 shows the 
microstructure of the nugget zone of the 
specimens W1, W7, W13, and W16 failed via IF, 
PIF, PTPPF, and PF modes, respectively. As can 
be seen, the nugget microstructure of specimen 
W1 consists of a fully martensitic structure. The 
low secondary pulse welding current and low 
secondary welding time produced insufficient 
heat to temper the brittle martensite, thus, the 
weld failed via interfacial failure and exhibited 
the worst load-bearing capacity and apparent 
lowest tensile shear peak load.  

 
Fig. 5. Microstructure of nugget zone of the welds (a) 

specimen W1 (b) specimen W7 (c) specimen W13 
and (d) specimen W16. 

On the other hand, the nugget microstructure of 
specimens W7, W13, and W16 exhibits a 
tempered martensite structure. This is because as 
the secondary pulse welding current and 
secondary pulse welding time increased, the heat 
input into the weld nugget increased which in turn 
intensified the martensite tempering. Moreover, 
as the electrode holding time between the primary 
pulse and secondary pulse is decreased, the 
cooling rate of the weld decreases, and some 
amount of heat is retained in the weld which is 
supplemented by total heat input to the nugget 

during tempering treatment. It is well known that 
nugget toughness is increased due to the 
tempering of martensite, hence, promoting 
pullout failure [16]. As a result, it may be 
concluded that the increase in the tensile shear 
load-bearing capability of the welds is caused by 
tempered martensite that formed within the 
nugget zone. 

3.3. Analysis of Taguchi Signal-to-Noise (S/N) 
Ratio 
Taguchi S/N ratio analysis is the most widely used 
approach for determining the optimal level of 
input parameters to produce the optimum quality 
characteristic [6]. Since the purpose of this work 
is to produce strong weld joints, the quality 
feature chosen in this study is "higher is better." 
Therefore, S/N ratios are computed using the 
following equation: 

�𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

� 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = −10 𝑙𝑙𝑙𝑙𝑙𝑙 �1
𝑛𝑛

  � 1
𝑦𝑦𝑖𝑖2

𝑛𝑛

𝑖𝑖=1
�         (1) 

where n denotes the number of experimental trials 
and, yi denotes the response value of the ith 
experiment in the orthogonal array. The value of 
n is 2 since each experimental run was performed 
twice.  
Fig. 6 shows the S/N ratios graph of tensile shear 
peak load. The optimal input welding parameters 
setting for achieving the maximum tensile shear 
peak load are A4B4C1, i.e., 7.5 kA secondary 
pulse welding current, 560 ms secondary pulse 
welding time, and 400 ms first pulse holding time. 
In addition, the secondary pulse welding current 
shows the highest S/N ratios value (i.e., 28.28), 
which indicates its dominant influence on the 
tensile shear peak load. 

 
Fig. 6. S/N ratio graph of tensile shear peak load (red 

circle indicates optimum welding parameters 
level) 
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3.4. Confirmation Test 
The final step in the design of experiments is to 
perform the confirmation test. A confirmation test 
is conducted at the optimum level of input process 
parameters to verify the estimated value against a 
confirmed value. In this study, after determining 
the optimum parameter levels, a new experiment 
was supposed to be designed to further improve 
weld quality. It is worth noting that if the optimum 
parameter levels coincide with one of the 
experimental runs of OA, then no confirmation test 
is required [13]. In the present study, a confirmation 
test is not required because the optimum 
combination of welding parameters and levels, i.e., 
A4B4C1, corresponds to experimental run W16. 

3.5. Regression Modeling 
A mathematical relationship is developed 
between dependent and independent parameters 
using a regression method. The tensile shear peak 
load of the weld joints is the dependent variable 
in this study, whereas the independent variables 
are secondary pulse welding current, secondary 
pulse welding time, and primary pulse holding 
time. The log-linear model was chosen because it 
takes the main effects and interactions on 
transformed variables. The designated general 
log-linear equation can be expressed as: 
ln Y = β0 + β1A + β2B + β3C + β4AB + β5AC + β6BC (2) 

where, Y is the response variable i.e., tensile shear 
peak load, βo is the response variable at the base 
level; A is secondary pulse welding current, B is 
secondary pulse welding time, C is primary pulse 
holding time, β1, β2, β3 are regression coefficients 
associated with main process parameters, β4, β5, 
β6 are parameters interaction coefficients. 
Minitab®18 software was used to compute the 
parameter coefficients. After computing each of 

equation (4)'s coefficients and substituting the 
coded values of the variables, the log-linear 
regression equation for predicting the tensile 
shear peak load can be re-written as follows: 
TS.Peak Load=                            (3) 
𝑒𝑒(3.594−0.0796𝐴𝐴−0.000262𝐵𝐵−0.000989𝐶𝐶+0.000047𝐴𝐴𝐴𝐴+0.000173𝐴𝐴𝐴𝐴+0.000001𝐵𝐵𝐵𝐵)      
Table 5 shows the regression predicted tensile 
shear peak loads of the welded joints. The 
adequacy of the regression model is confirmed by 
using analysis of variance (ANOVA) and Fisher’s 
(F) test. The coefficient of determination (R2) and 
adjusted coefficient of determination (adj R2) are 
used in ANOVA to assess a model's fitness. In 
general, the F-value at a given DOF for the 
regression model and the error are compared at a 
confidence level of 95%. The model is considered 
statistically significant if the estimated F-value is 
higher than the tabulated F-value [18]. Table 5 
shows the ANOVA and F-test results of the 
model. According to ANOVA results, the value of 
R2 is 94.75 % and adj R2 is 91.26% which implies 
that the model is statistically significant. 
According to the F-test result, the calculated F-
value of the model is 27.09 which is greater than 
the tabulated F-value i.e., 3.3738, thus regression 
model is confirmed to be adequate signifies the 
actual relationship between the input welding 
process parameters and the response. 
Furthermore, the F-test is utilized to identify 
process parameters that have a substantial effect 
on quality characteristics. An F-value greater than 
four usually implies that the parameter effect is 
quite large [13]. It is observed that the F-value of 
parameters A and C and interactions AB and AC 
are greater than 4. Thus, the indicated two 
parameters and two interactions have a significant 
effect on the tensile shear peak load of weld 
joints. 

Table 5. Analysis of variance and F-test results for tensile shear peak load model 
Source DOF Sum of squares Mean square F-Value P-Value 

Regression model 6 0.026246 0.004374 27.09 0.000 
A 1 0.001690 0.001690 10.46 0.010 
B 1 0.000147 0.000147 0.91 0.365 
C 1 0.001569 0.001569 9.72 0.012 

AB 1 0.000853 0.000853 5.28 0.047 
AC 1 0.002127 0.002127 13.17 0.005 
BC 1 0.000157 0.000157 0.97 0.349 

Error/Residual 9 0.001453 0.000161   
Total 15 0.027699    

R-sq= 94.75 %, R-sq(adj)= 91.26 % 
F- value (calculated), 𝑓𝑓 (6,9,0.05)= 27.09, F- value (tabulated), 𝑓𝑓 (6,9,0.05)= 3.3738 
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3.6. Artificial Neural Network Modeling 
To predict the tensile shear peak load of the welds, 
the data is modeled using an artificial neural 
network. Fig. 7 shows the topological structure of 
the network used in the present investigation.  

 
Fig. 7. The ANN topology used for prediction of 

tensile shear peak load 

A feed-forward back propagation (BP) network is 
used to learn the mapping between inputs 
parameters (i.e, A, B and C) and output response 
(i.e, tensile shear peak load). One hidden layer 
with 10 neurons is used to compute the nonlinear 

mapping between inputs and output(s). 
Levenberg-Marquardt (LM) algorithm was used 
for training the neural networks. The LM 
algorithm was trained for 6 iterations. The 
transfer function of the hidden layer was set as the 
sigmoid function. For the training of the network, 
75% of data (twelve experimental runs) are used, 
and the remaining 30% of data (four experimental 
runs) are used for testing and validation. The 
experimental data for training and testing were 
chosen at random. 
The accuracy of the ANN model is checked by 
using Pearson’s correlation coefficient (R). In 
statistics, the correlation coefficient is a statistical 
measure of the strength of correlation between 
experimental vs. estimated value. A correlation 
coefficient of 1 means there is no error and all 
points lie on the line passing through the origin. 
The very high correlation coefficient between 
experimental and predicted tensile shear peak 
load for training testing, validation, and all data 
set confirms the high accuracy of the ANN model, 
as shown in Fig. 8. 

 
Fig. 8. Analysis of Pearson's correlation coefficient R of the experimental and predicted tensile shear peak load 

of the welds using ANN model 
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3.7. Selecting an accurate model 
Fig. 9 shows the experimental versus predicted 
tensile shear peak load and the verified prediction 
accuracies of the regression model and neural 
network model. The percentage errors of the 
models are used to assess the performance. Fig. 
10 presents the percentage errors of the two 
models based on the validation data. It may be 
argued that the BP neural network outperforms 
the regression model due to its lower mean value 
of the error. One of the primary reasons for the BP 
neural network model's better performance is its 
random non-linear mapping capability. However, 
it is proposed that further training data could 
increase the ANN model's accuracy. 

 
Fig. 9. Tensile shear peak load experimental vs 
predicted using the regression model and neural 

network model 

 
Fig. 10. Comparison of errors in regression and ANN 

models 

4. CONCLUSIONS 

This paper presented the investigation of the 
optimization, modeling, and effect of welding 
parameters on the tensile shear load-bearing 
capacity of double pulse resistance spot welded 
DP590 steel.  
Based on the results following conclusions are 
drawn: 
1) A maximum average tensile shear peak load of 

26.47 was achieved at optimum welding 
parameters i.e., second pulse welding current 
of 7.5 kA, second pulse welding time of 560 
ms, and first pulse holding time of 400 ms. 
Based on S/N ratios, it was found that the 
second pulse welding current is the most 
influential parameter that controls the tensile 
shear load-bearing capacity of the welds.  

2) The results also showed that increasing 
secondary pulse welding current and welding 
time and decreasing first pulse holding time 
could lead to weld joints of high load-carrying 
capacity.  

3) The ANN model predicted the output response 
with high accuracy even with fewer training 
data. The ANN model showed small 
percentage error than the regression model. 
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