Search published articles



M. Bostanian, S. M. Barakati, B. Najjari, D. Mohebi Kalhori,
Volume 3, Issue 3 (9-2013)
Abstract

Hybrid Electric Vehicles (HEVs) are driven by two energy convertors, i.e., an Internal Combustion (IC) engine and an electric machine. To make powertrain of HEV as efficient as possible, proper management of the energy elements is essential. This task is completed by HEV controller, which splits power between the IC engine and Electric Motor (EM). In this paper, a Genetic-Fuzzy control strategy is employed to control the powertrain. Genetic-Fuzzy algorithm is a method in which parameters of a Fuzzy Logic Controller (FLC) are tuned by Genetic algorithm. The main target of control is to minimize two competing objectives, consisting of energy cost and emissions, simultaneously. In addition, a new method to consider variations of Battery State of Charge (SOC) in the optimization algorithm is proposed. The controller performances are verified over Urban Dinamometer Driving Cycle (UDDS) and New Europian Driving Cycle (NEDC). The results demonstrate the effectiveness of the proposed method in reducing energy cost and emissions without sacrificing vehicle performance.
A. R. Noorpoor,
Volume 3, Issue 3 (9-2013)
Abstract

Oil pump in diesel engine has significant effect on energy consumption and environment pollution. In this paper, the modeling and simulation of a gear oil pump used in a diesel engine and its fluid flow analysis by a solver has been explained. Also the optimization and redesign of it has been discussed and then the outcomes have been compared with the experimental and previous results. The type of this oil pump is external gear pump with involute tooth profile, so we need to use the gears with the minimum number of tooth to optimize the pump performance and getting the optimum displacement volume rate of it. While the engaged gears of the pump rotating together, the intersection between them changes in time. So their boundaries should be considered as movable. The strategy used here consist in using dynamic meshes, dividing a tooth rotating cycle into a certain number of time steps and investigating the flow and getting the results for each time steps.
B. Soleimani, M. M. Jalili,
Volume 3, Issue 3 (9-2013)
Abstract

Wheel/rail contact simulation is one of the most complicated problems in the modeling of railway vehicles. The wheel/rail interaction plays a unique role in rail vehicle dynamics. In this paper, the dynamic response of the wheel on irregular rail track is analyzed with analytical approach using the method of Multiple Scales (MMS). The Hertzian contact theory is used to obtain the relationship between normal contact force and the displacement of the mass center of the wheel. Analytical approach is expanded for performance of train’s wheel travelling on the rail. To validate the method presented in this paper, responses of the model using MMS method are compared with the results obtained from the Runge–Kutta numerical solution. Finally effects of the wheelset preload on response frequency have been studied.
A. Jafari, Sh. Azadi, M. Samadian,
Volume 3, Issue 3 (9-2013)
Abstract

The directional response and roll stability characteristics of a partly filled tractor semi-trailer vehicle, with cylindrical tank, are investigated in various maneuvers. The dynamic interaction of liquid cargo with the tractor semi-trailer vehicle is also evaluated by integrating a dynamic slosh model of the partly filled tank with five-degrees-of-freedom of a tractor semi-trailer tank model. The dynamic fluid slosh within the tank is modeled using three-dimensional Navier-Stokes equations, coupled with volume-of-fluid equations and analysed using the FLUENT software. The coupled tank-vehicle model is subsequently analysed to determine the roll stability characteristics for different maneuvers. The results showed the interaction of fluid slosh with vehicle's dynamic. Another findings of this investigation also revealed that the roll stability of a tractor semi-trailer tank carrying liquid was highly affected by fluid sloshing and caused degradation of roll stability in comparison with vehicle carrying rigid cargo.
A. Mirmohammadi, F. Ommi,
Volume 3, Issue 3 (9-2013)
Abstract

The purpose of present paper is simulation a direct injection stratified charge natural gas engine. The KIVA-3V code was used for gaseous fuel injection simulation. Compression and expansion stroke of engine cycle is simulated using KIVA-3V code. In cylinder fuel equivalence ratio distribution criterion is used for studying mesh independency. The results show that 550000 cells number is sufficient. The amount of NO emission in the end of closed cycle simulation was found equal 674.875 ppm and In cylinder pressure versus engine crank angle degree was simulated that maximum value found in 366 oCA that equal to 27.3222 bar.
E. Masoumi Khalil Abad, A. Ghazanfari, R. Hashemi,
Volume 3, Issue 4 (12-2013)
Abstract

In this study, an extended stress-based forming limit diagram (FLD) for prediction of necking based on the Marciniak and Kucznski (M-K) model is represented and applied in tube hydroforming. The bulge forming of a straight tube is simulated by finite element method and verified with published experimental data. This adaptive simulation technique is based on the ability to detect the onset and growth of defects (e.g., bursting and wrinkling) and to promptly readjust the loading paths. Thus, a suitable load path is determined by applying Adaptive Simulation Method in ANSYS Parametric Design Language (APDL).
S. Pramanik,
Volume 3, Issue 4 (12-2013)
Abstract

Kinematic synthesis of a trailing six-member mechanism has been carried out to achieve five precision points of an automotive steering mechanism. The inner wheel can be rotated up to forty five degrees with fair accuracy. Results show that the divergent end behavior of Ackermann Steering Mechanism has been overcome by the present mechanism. The work is similar to earlier work by the present author. But the present mechanism is a trailing mechanism instead of a leading one. This helps to eliminate the spur gears used earlier to bring the mechanism on the rear side of the front axle.
B. Sakhaei, M. Durali,
Volume 3, Issue 4 (12-2013)
Abstract

By new advancements in vehicle manufacturing vehicle quality evaluation and assurance has become a more critical issue. In present work, the vibration transfer path analysis and vibration path ranking of a car interior has been performed. The method is similar to classical multilevel TPA methods but has distinct differences. The method is named VIVS which stands for Vehicle Interior Vibration Simulation. Performance of some tests like chassis dyno test, virtual mass function test and body transfer function test are required in this approach. The accelerations on both sides of the engine mounts are measured on chassis dyno by which the virtual mass and body transfer functions are measured at engine mounts. Using the concept of multilevel TPA, the vibration share from each path is calculated. The overall vibration magnitude at target point is calculated by summing the shares. Path ranking can be done by having the share of each path from overall vibration magnitude. Using this method on a sample vehicle, some modification has been proposed to decrease the vibration at target point, and the side effect of the modifications on the powertrain dynamic behavior has been evaluated. The proposed method needs less analysis time than classical TPA methods and its ability in optimization of vibration magnitude at target points is proven.
M. Esfahanian, A. Mahmoodian, M. Amiri, M. Masih Tehrani, H. Nehzati, M. Hejabi, A. Manteghi,
Volume 3, Issue 4 (12-2013)
Abstract

In the present study, a model of a large Lithium Polymer (Li-Po) battery for use in the simulation of Hybrid Electric Vehicles (HEVs) is developed. To attain this goal, an Equivalent Circuit (EC) consisting of a series resistor and two RC parallel networks is considered. The accuracy and the response time of the model for use in an HEV simulator are studied. The battery parameters identification and model validation tests are performed in low current with a good accuracy. Similar test process is implemented in high current for another cell and the simulation is verified with experimental results. The validation tests confirm the accuracy of the model for use in HEV simulator. Finally, the battery model is used to model a Vehicle, Fuel and Environment Research Institute (VFERI) hybrid electric city bus using ADVISOR software and its compatibility with other components of the vehicle simulator are demonstrated in a drive cycle test.
A. Amini, M. Mirzaei, R. Khoshbakhti Saray,
Volume 3, Issue 4 (12-2013)
Abstract

In spark ignition (SI) engines, the accurate control of air fuel ratio (AFR) in the stoichiometric value is required to reduce emission and fuel consumption. The wide operating range, the inherent nonlinearities and the modeling uncertainties of the engine system are the main difficulties arising in the design of AFR controller. In this paper, an optimization-based nonlinear control law is analytically developed for the injected fuel mass flow using the prediction of air fuel ratio response from a mean value engine model. The controller accuracy is more increased without chattering by appending the integral feedback technique to the design method. The simulation studies are carried out by applying severe changes in the throttle body angle to evaluate the performance of the proposed controller with and without integral feedback. The results show that the proposed controller is more effective than the conventional sliding mode controller in regulating the AFR without chattering.
A. Hemati, M. Tajdari, A.r. Khoogar,
Volume 3, Issue 4 (12-2013)
Abstract

This paper presents a reduce roll vibration of the full vehicle model with passive suspension systems using vibration absorber to change the dynamic system matrix stat’s eigenvalue. Since using the controller system has been splurged and required to energy consuming, in this research the vehicle body roll vibration has been reduced and supplied vehicle stability using a vibration absorber for the passive suspension system. In this paper a new manner is introduced to reduce body roll angle and body's roll acceleration. The transverse instability in the independent suspension is a main problem, roll angle decreased transverse stability, that it has been reduced using vibration absorber. The optimal value of vibration absorber’s mass, spring and damping coefficient has been determined by using genetic algorithms (GA) to achieve developed roll angle behavior. The main purpose of this article is to reduce vehicle body roll angle that has been acquired using vibration absorber, this manner is better than other ways for roll reduction of vehicle body because it has done without any energy consuming.
E. Alizadeh Haghighi, S. Jafarmadar, H. Taghavifar,
Volume 3, Issue 4 (12-2013)
Abstract

Artificial neural network was considered in previous studies for prediction of engine performance and emissions. ICA methodology was inspired in order to optimize the weights of multilayer perceptron (MLP) of artificial neural network so that closer estimation of output results can be achieved. Current paper aimed at prediction of engine power, soot, NOx, CO2, O2, and temperature with the aid of feed forward ANN optimized by imperialist competitive algorithm. Excess air percent, engine revolution, torque, and fuel mass were taken into account as elements of input layer in initial neural network. According to obtained results, the ANN-ICA hybrid approach was well-disposed in prediction of results. NOx revealed the best prediction performance with the least amount of MSE and the highest correlation coefficient(R) of 0.9902. Experiments were carried out at 13 mode for four cases, each comprised of amount of plastic waste (0, 2.5, 5, 7.5g) dissolved in base fuel as 95% diesel and 5% biodiesel. ANN-ICA method has proved to be selfsufficient, reliable and accurate medium of engine characteristics prediction optimization in terms of both engine efficiency and emission.
A. Elfasakhany,
Volume 4, Issue 1 (3-2014)
Abstract

The effects of unleaded gasoline and unleaded gasoline–ethanol blends on engine performance and pollutant emissions were investigated experimentally in a single cylinder, four-stroke spark-ignition engine with variable engine speeds (2600–3500 rpm). Four different blends on a volume basis were applied. These are E0 (0% ethanol + 100% unleaded gasoline), E3 (3% ethanol + 97% unleaded gasoline), E7 (7% ethanol + 93% unleaded gasoline) and E10 (10% ethanol + 90% unleaded gasoline). Results of the engine test indicated that using ethanol–gasoline blended fuels improve output torque, power, volumetric efficiency and fuel consumption of the engine it was also noted that fuel consumption depends on the engine speed rather than the ethanol content for ethanol less than 10% blended ratio. CO and unburned hydrocarbons emissions decrease dramatically as a result of the leaning effect caused by the ethanol addition CO2 emission increases because of the improved combustion.
M.h. Shojaeefard, V.kh. Mousapour, M.sh. Mazidi,
Volume 4, Issue 1 (3-2014)
Abstract

Thermal Contact Conductance (TCC) between an exhaust valve and its seat is one of the important parameters to be estimated in an internal combustion engine. An experimental study presented here to acquire temperature in some interior points to be used as inputs to an inverse analysis. An actual exhaust valve and its seat are utilized in a designed and constructed setup. Conjugate Gradient Method (CGM) with adjoin problem for function estimation is used for estimation of TCC. The method converges very rapidly and is not so sensitive to the measurement errors. Contact frequency is one the factors which have a significant influence on TCC. The results obtained from current inverse method as well as those obtained from linear extrapolation method show that the thermal contact conductance decreases as the contact frequency increases. The results obtained from both sets of results are also in good agreement.


M. Mokhtari, K. Farhadi,
Volume 4, Issue 1 (3-2014)
Abstract

Automobile light weight structural composites are subjected to the various loadings in their service lives. Honeycombs are increasingly used as core structures in automobile light weight structures as energy absorbers. In this paper the energy absorption of honeycomb panels under impact of cylindrical projectile is numerically and experimentally studied. The effect of the core materials and cross-ply or semi-isotropic lamination of face-sheets are checked numerically. Results shown that the aluminum cores vs. Nomex cores and semi-isotropic lamination of face-sheets have much better energy absorption aspects in impact loading.
H. Golbakhshi, M. Namjoo, M. Mohammadi,
Volume 4, Issue 1 (3-2014)
Abstract

The dissipated energy from periodic deformation is regarded as the main reason for heat generation and temperature rise inside the tire domain. However, the mechanical behavior of rubber parts is highly temperature dependent. In most performed investigations, the influence of thermal effects on stress/ deformation fields of pneumatic tires is ignored and just temperature distribution is considered. Hence in this study, using a series of 2D and 3D finite element models, a robust and efficient numerical study is presented for thermo-mechanical analysis of pneumatic tires specially 115/60R13 radial tire. Finally, the effects of loading condition s and ambient temperature on the thermo-mechanical properties of tire are investigated in detail. Comparing the obtained results with the available results in literature, shows a good agreement of the presented studies with related published works.
A. Ghasemian, A. Keshavarz, H. Sotodeh,
Volume 4, Issue 1 (3-2014)
Abstract

The subjects of heat transfer and cooling system are very important topics in the Internal Combustion Engines (ICE). In modern cooling systems, low weight, small size and high compactness are the critical designing criteria that requires heat transfer enhancement. Boiling phenomenon which is occurred in the water jacket of the ICE is one of the methods to increase heat transfer in the coolant system of an ICE. A research has been shown that parameters such as material, temperature, and roughness of the heated surface have direct effect on the rate of heat transfer in a boiling phenomenon. In this paper the potential of boiling phenomenon and the effect of the surface roughness on the amount of heat flux removed by the coolant flow in the engine water jacket is investigated experimentally. For this purpose the experiments was carried out in three different flow velocities and also three different surface roughnesses. Results show that the boiling and roughness of a hot surface will increase the heat removal significantly.
E. Honarvar Gheysari, A. Babakhani, A. Haerian,
Volume 4, Issue 1 (3-2014)
Abstract

Shot peening applies a residual compressive stress field (RCSF) on the surface of parts. It also shifts “crack nucleation sites” to sub-surface locations. A nondestructive method of measuring the stresses, Sin2ψ was utilized here and the stress values introduced to Ansys software. For this purpose, uniform stress in all directions was applied on the con rod. Loading on the rod in Ansys had three steps: RCSF caused by shot peening (measured by XRD), and tensile and compressive stresses caused by inertial and gas forces, respectively (calculated). Fatigue Macro of Ansys was resumed carrying out the cyclic loading and thereby, improvement of powder forged connecting rods' fatigue life, caused by shot peening was obtained.
A. Khalkhali, M. Afroosheh, M.r. Seyedi,
Volume 4, Issue 1 (3-2014)
Abstract

In this paper, numerical simulation of FRP composite cylinder tubes progressive crushing processes is conducted using LS-Dyna. Details on the numerical modeling strategy are given and discussed. It is found that triggers introduced in the numerical simulation can effectively model the bevel trigger at the end of the tubular specimens. It is also found that two-layer finite element model based on the TsaiWu failure criteria is effective in representing the crushing failure mode of the tubular composite specimens and energy absorption characteristics. Employing GEvoM software, two meta-models are then obtained for modeling of both the absorbed energy (E) and the peak crushing force (Fmax) with respect to geometrical design variables using input output data obtained from the finite element modeling. Comparison between obtained meta-models and numerical results in both of training and testing sets show good approximation by using obtained polynomial models.


M. Masih-Tehrani , M.r. Hairi-Yazdi , V. Esfahanian,
Volume 4, Issue 2 (6-2014)
Abstract

In this paper, the development and optimization of Power Distribution Control Strategy (PDCS) have been performed for a Hybrid Energy Storage Systems (HESS) of a Series Hybrid Electric Bus (SHEB). A common PDCS is based on the use of Ultra-Capacitor (UC) pack. A new simple PDCS is developed as a battery based one. For the battery based PDCS, four parameters are introduced for tuning the PDCS performance. The Design of Experiment (DoE) method is utilized to optimize the parameters of the battery based PDCS for the driving cycles and the vehicle controllers. The results show the optimized battery based PDCS performance for some cases are better than the UC based PDCS performance. Vice versa, for some cases the performance of the UC based PDCS is better than the battery based PDCS. Finally, the costs rising from the HESS (about 66%) is reasonable when considering the over double increase in the battery life-time when using an appropriate PDCS.

Page 3 from 10     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb