Search published articles


Showing 332 results for Type of Study: Research

Mr Mahdi Soufizadeh, Dr Seyed Mehdi Mirmehdi,
Volume 13, Issue 4 (12-2023)
Abstract

The general public considers auto service operators to be experts in their work, and they use their advice and guidance when changing the oil. Therefore, due to the importance of this issue, during applied research conducted in a mixed (quantitative and qualitative) manner, an attempt was made to identify and prioritize factors affecting the offer of motor oil brands by Iranian auto services using the fuzzy Delphi technique. In terms of the research method, this research is considered descriptive-survey research, and its statistical population includes all the operators of Iranian auto services. The statistical sample of the research consists of 36 Iranian auto service operators who were selected as a cluster from all over Iran. In the following, after collecting data through semi-structured interviews and questionnaires and analyzing the information, it was determined that the engine oil quality factor is the most important in introducing the engine oil brand by the auto services, according to the experts present. Also, after the quality of the engine oil, the two factors of matching the engine oil with the technical specifications of the car and the timely delivery of orders from the manufacturing companies were placed in the second and third ranks of importance, respectively.
Dr Ali Farahbakhsh,
Volume 13, Issue 4 (12-2023)
Abstract

This paper presents a single layer circularly polarized (CP) antenna array based on gap waveguide (GW) technology for automotive radar applications. The antenna element is a curved slot that is cut into the top wall of a groove gap waveguide (GGW) structure. An 8×8 slot array antenna is constructed by combining eight sub-arrays of linearly arranged slots, using an 8-way power divider as the feeding network. The power divider and the transition from WR12 to GGW are also designed based on GW technology. The proposed antenna array operates in the frequency band from 76 GHz to 81 GHz, covering the automotive radar working bandwidth. The antenna has a maximum gain of 23.8 dBi and a minimum axial ratio of 0.5 dB. The antenna performance is verified by simulation using CST Microwave Studio.
Hamidreza Ghasempoor, Ali Keshavarzi, Hamed Saeidi Googarchin,
Volume 13, Issue 4 (12-2023)
Abstract

The utilization of adhesively bonded square sections (ABSS) serves to enhance energy absorption and specific energy absorption (SEA) when subjected to oblique loading. Finite element models utilizing LS-DYNA were constructed in order to examine the deformation mode and load-displacement characteristics of ABSS and hybrid aluminum/carbon fiber reinforced polymer models. Subsequently, an evaluation was conducted on the general parameter pertaining to crashworthiness and the capacity for absorption of energy. The results reveal that an increase in the quantity of Carbon Fiber Reinforced Polymer (CFRP) layers within the stacking sequence of [0,90] affords enhanced potential for energy absorption. Conversely, the stacking sequence of [90] exhibits an incongruity with this trend, and achieves superior energy absorption capacity with a count of 4 CFRP layers rather than 8.
The present study indicates that carbon fiber reinforced polymer (CFRP) possessing a stacking sequence of [90] exhibits superior energy absorption capacity under both axial and oblique loading conditions at an inclination angle of 10 degrees. In contrast, the use of eight layers of CFRP with a stacking sequence of [0, 90] is found to yield better performance in achieving both axial and oblique loading up to 10 degrees.
 
Dr Mansour Baghaeian, Mr Khajeh Morad Sharghi,
Volume 13, Issue 4 (12-2023)
Abstract

In this article, the effect of the usage of variable speed electric water pump on the cooling system of a type of passenger car engine has been investigated. The engine water circulation in most of today's cars uses a mechanical method, the power required for its circulation is provided by a belt with a ratio of 1:1 from the crankshaft. This action makes the changes of the water pump speed a function of the engine speed and there is no control over it. One way to solve this problem is to use an intelligent thermal management system. In this method, some components of the cooling system, including the electric water pump, are controlled based on the working conditions and engine temperature. In this research, GT Suite and Simulink software were used simultaneously, and for this purpose, the engine cooling circuit with a mechanical water pump was simulated in GT Suite software and the accuracy of laboratory values was verified in terms of heat transfer. Then the mechanical connection of the water pump was disconnected and the water pump circuit was controlled with an electric motor. In the next step, in order to obtain the control pattern, the electric water pump was replaced with the mechanical water pump in the simulation pattern. The results of the software and experimental simulations of the intelligent cooling system showed a 13.4% reduction in engine warm-up time.

Mustafa Mirtabaee, Mohammad Abasi,
Volume 13, Issue 4 (12-2023)
Abstract

Protection of Armor Vehicles and military truck Occupants Against Explosion Mine and IED is the most important Parameter for comprehensive performance evaluation of armored vehicle. Armored Vehicle components Specifically Hull Floor Must be Able to Disperse Blast Shock Waves and Resist Against the structural Fracture. Analysis of the War Documents proves that flat hulls with thin-walled steel cannot resist against Anti-Tank Mines. In Recent years, development of V-shape Hull configurations Consider as an efficient Approach to improve Safety of armored vehicles. In the new generation of Armor Vehicle, Monocoque chassis combined with V-shape hull, But Replacement of All of the Old Armor Vehicle in the Defense Industry is not cost effective. So, there is an urgent need to develop the efficient strategy for enhancing the protection level of old armor vehicle. Since most of the armored vehicles used in the armies of different countries were designed and built in the past years, it is very likely that the safety standards have not been fully observed in them. Therefore, it is of great importance to provide a simple and low-cost plan for the reliable upgrade of such armored and logistics vehicles. In this article, by investigating the effect of placing V-shaped composite panels in three case studies, we were able to reduce the acceleration of the center of mass of the passenger compartment by approximately 7 times, in addition to reducing displacement by 50% on average. In addition, the explosion products were not able to penetrate into the cabin.

Dr. Pezhman Bayat, Dr. Peyman Bayat, Dr. Abbas Fattahi Meyabadi,
Volume 14, Issue 1 (3-2024)
Abstract

The hydrogen fuel cell is one of the latest technologies used in fuel cell electric vehicles (FCEVs), which uses hydrogen gas to supply the electrical energy needed by the electric engines. The proposed topology has boost function and uses a novel diodes and switches network, which leads to the creation of an integrated system with high efficiency and high voltage gain. Other advantages of the proposed converter are small size, low voltage and current stresses on all the components, less component count, continuous input current and light weight; which makes it more efficient compared to existing structures. In this regard, theoretical calculations and steady state analysis for the proposed system have been presented. Also, in order to verify the performance of the proposed converter, it has been simulated in the MATLAB/Simulink software environment at the rated power of 1kW, with an output voltage of 220V and an output current of 4.55A, and the results have been presented in detail. The peak efficiency of the proposed converter reached 97.4% at half power, and the efficiency at rated power was reported 96%. Moreover, in the proposed structure, the voltage stress of capacitors, diodes and switches reaches the maximum value of 63%, 83% and 41% of the output voltage, respectively; which are promising values. Finally, to verify the performance of the proposed converter and the relationships obtained, a 1kW prototype is built in the laboratory to demonstrate the efficiency of the proposed converter.
 
Dr Mohammad H. Shojaeefard, Dr Mollajafari Morteza, Mr Seyed Hamid R. Mousavitabar,
Volume 14, Issue 1 (3-2024)
Abstract

Fleet routing is one of the basic solutions to meet the good demand of customers in which decisions are made based on the limitations of product supply warehouses, time limits for sending orders, variety of products and the capacity of fleet vehicles. Although valuable efforts have been made so far in modeling and solving the fleet routing problem, there is still a need for new solutions to further make the model more realistic. In most research, the goal is to reach the shortest distance to supply the desired products. Time window restrictions are also applied with the aim of reducing product delivery time. In this paper, issues such as customers' need for multiple products, limited warehouses in terms of the type and number of products that can be offered, and also the uncertainty about handling a customer's request or the possibility of canceling a customer order are considered. We used the random model method to deal with the uncertainty of customer demand. A fuzzy clustering method was also proposed for customer grouping. The final model is an integer linear optimization model that is solved with the powerful tools of Mosek and Yalmip. Based on the simulation results, it was identified to what extent possible and accidental changes in customer behavior could affect shipping costs. It was also determined based on these results that the effective parameters in product distribution, such as vehicle speed, can be effective in the face of uncertainty in customer demand.


Seied Isa Koranian, Mahdi Gholampour, Hamid Mazandarani,
Volume 14, Issue 1 (3-2024)
Abstract

Harnessing nanomaterials and the piezo-phototronic effect, we engineered a high-performance ultraviolet (UV) photodetector (PD), unveiling a new frontier in optoelectronics. This novel device seamlessly integrates zinc oxide nanorods (ZnO NRs) onto a flexible polyethylene terephthalate- indium tin oxide (PET-ITO) substrate through a straightforward and efficient hydrothermal process. This unique nanostructure design outshines its competitors, producing significantly higher current under UV illumination despite a comparable detection area. The plot thickens with the intriguing "piezo-phototronic effect," where applying pressure under UV light amplifies the current and overall device efficiency. This groundbreaking discovery paves the way for cutting-edge optoelectronic applications, where nanomaterials and the piezo-phototronic effect join forces to redefine performance.
 
Mr Seyed Amir Mohammad Managheb, Mr Hamid Rahmanei, Dr Ali Ghaffari,
Volume 14, Issue 1 (3-2024)
Abstract

The turn-around task is one of the challenging maneuvers in automated driving which requires intricate decision making, planning and control, concomitantly. During automatic turn-around maneuver, the path curvature is too large which makes the constraints of the system severely restrain the path tracking performance. This paper highlights the path planning and control design for single and multi-point turn of autonomous vehicles. The preliminaries of the turn-around task including environment, vehicle modeling, and equipment are described. Then, a predictive approach is proposed for planning and control of the vehicle. In this approach, by taking the observation of the road and vehicle conditions into account and considering the actuator constraints in cost function, a decision is made regarding the minimum number of steering to execute turn-around. The constraints are imposed on the speed, steering angle, and their rates. Moreover, the collision avoidance with road boundaries is developed based on the GJK algorithm. According to the simulation results, the proposed system adopts the minimum number of appropriate steering commands while incorporating the constraints of the actuators and avoiding collisions. The findings demonstrate the good performance of the proposed approach in both path design and tracking for single- and multi-point turns.
Mr. Nasrollah Taghizadeh, Dr. Mohsen Esfahanian,
Volume 14, Issue 1 (3-2024)
Abstract

Due to the importance of vehicle weight reduction which can reduce fuel consumption and air pollution, changes are made in vehicles. In heavy trucks with payload limitations, a lighter trailer can provide higher load-carrying capacity and more economical benefits. Composite materials are a good candidate for material exchange due to their resistance to various conditions and low weight compared to steel. In this paper, the trailer material made of steel will be replaced by composite so that strength density will remain the same. For this purpose, the finite element method is used for static and dynamic analyses. At first, the model of a two-axle trailer is developed using SolidWorks software. Then, using standard loading and failure theories (Tsai-Hill, Tsai-Wu), the number of composite layers and their suitable angles are selected for the chassis. Finally, the loaded trailer's static, modal, and dynamic analysis are performed using the finite element method with a composite material. Results show that 17 layers of polymer composite with glass fibers with 0-0 angle can reduce 17.7 percent weight.
Dr Mohammad Shirzadifar, Dr Javad Marzbanrad,
Volume 14, Issue 1 (3-2024)
Abstract

The corrugated composite plates have wide application to improve the energy absorption and failure behavior of panel structures. The roof panel of the bus could benefit from the use of these structures to reduce impact failures in rollover accidents. The aim of this paper is to design a new configuration of bus roof panels stiffened with multi-layer semi-circular corrugated CFRP plates to minimize structure failure during rollover accidents. An analytical failure equation of Tsai-Hill index for the new proposed panel subjected to dynamic impact loading has been derived. The failure equation was validated using FEM methods and digital image correlation impact tests. According to the roll over impact situation, the multi-layered semi-circular corrugated woven CFRP roof panel displays a positive failure behavior of 89%.
 
Seied Isa Koranian, Mahdi Gholampour, Hamid Mazandarani,
Volume 14, Issue 2 (6-2024)
Abstract

Fueled by their potential for energy harvesting, ZnO nanorods (NRs) have sparked considerable enthusiasm in the development of piezoelectric nanogenerators in the last decade. This is attributed to their exceptional piezoelectric properties, semiconducting nature, cost-effectiveness, abundance, chemical stability in the presence of air, and, the availability of diverse and straightforward crystal growth technologies. This study explores and compares the piezoelectric properties of two promising nanostructured ZnO architectures: thin films deposited via radiofrequency (RF) magnetron sputtering and well-aligned nanorod arrays grown using a hydrothermal process. Both structures are fabricated on flexible polyethylene terephthalate (PET) with an indium tin oxide (ITO) electrode (PET-ITO substrate), presenting valuable options for flexible piezoelectric devices. By directly comparing these distinct morphologies, we provide insights into their respective advantages and limitations for energy harvesting and sensor applications. The investigation into the piezoelectric properties of ZnO NRs involved the construction of an actual piezoelectric nanogenerator. This device demonstrated a direct correlation between applied mechanical forces and the resultant voltage outputs. It was observed that when the same external force was applied to both devices, the ZnO NRs-based piezoelectric nanogenerator (PENG) exhibited a higher output voltage compared to the other device.

Page 17 from 17    
...
17
Next
Last
 

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb