Search published articles


Showing 3 results for Tabatabaei

P. Mohammadi, A.m. Nikbakht, M. Tabatabaei, Kh. Farhadi,
Volume 2, Issue 3 (7-2012)
Abstract

Global air pollution is a serious threat caused by excessive use of fossil fuels for transportation. Despite the fact that diesel fuel is a big environmental pollutant as it contains different hydrocarbons, sulphur and crude oil residues, it is yet regarded as a highly critical fuel due to its wide applications. Nowadays, biodiesel as a renewable additive is blended with diesel fuel to achieve numerous advantages such as lowering CO2, and CO emissions as well as higher lubricity. However, a few key drawbacks including higher production cost, deteriorated performance and likelihood to increase nitrogen oxide emissions have also been attributed to the application of diesel-biodiesel blends. Expanded polystyrene (EPS), known as a polymer for packaging and insulation, is an ideal material for energy recovery as it holds high energy value (1 kg of EPS is equivalent to 1.3 liters of liquid fuel). In this study, biodiesel was applied as a solvent of expanded polystyrene (EPS) during a special chemical and physical treatment. Various percentages of EPS in biodiesel blended diesel were tested to evaluate the fuel properties, emissions and performance of CI engine. The results of the variance analysis revealed that the addition of the additive improved diesel fuel properties by increasing the flash point as well as the reduction of density and viscosity. Despite a 3.6% reduction in brake power, a significant decrease in brake specific fuel consumption (7.26%) and an increase in brake thermal efficiency (7.83%) were observed at the full load and maximum speed of the engine. Additionally, considerable reductions of CO, CO2, NOx and smoke were achieved.
S. H. Tabatabaei Oreh, R. Kazemi, N. Esmaeili,
Volume 4, Issue 3 (9-2014)
Abstract

Direct Yaw moment Control systems (DYC) can maintain the vehicle in the driver’s desired path by distributing the asymmetric longitudinal forces and the generation of the Control Yaw Moment (CYM). In order to achieve the superior control performance, intelligent usage of lateral forces is also required. The lateral wheel forces have an indirect effect on the CYM and based upon their directions, increase or decrease the amount of CYM magnitude. In this paper, a systematic and applicable algorithm is proposed to use the lateral force in the process of Yaw controlling optimally. The control systems are designed based on the proposed algorithm. This system includes Yaw rate controller and wheel slip controllers which are installed separately for each wheel. Both of the mentioned control systems are designed on the basis of the Fuzzy logic. Finally, the capabilities of the proposed control systems are evaluated in a four wheel drive vehicle, for which, the traction of each wheel can be controlled individually. It is shown that considering the lateral force effect offers significant improvement of the desired yaw rate tracking
Seyyed Hamed Tabatabaei, Saeed Moradi Haghighi, Amirhossein Kiani, Kasra Ghasemian,
Volume 11, Issue 2 (6-2021)
Abstract

In this paper, an optimized insulator for sound packaging of the vehicle dash panel is proposed. The combination of the micro perforated panel and porous layers has been selected to insulate the dash panel of a vehicle.  The main advantages of the mentioned combination are light weight and various tunable parameters in comparison with other insulators. These provide significant flexibility to achieve an optimal performance for the noise attenuation of the vehicle cabin. Therefore, the parameters of the selected sound package have been optimized in order to achieve suitable sound absorption in a selected frequency range. Furthermore, the Genetic Algorithm (GA) is used to optimize the parameters. It can achieve more reliable and more accurate outcomes compared to the conventional method.  Full vehicle SEA (Statistical Energy Analysis) simulations are used to evaluate the optimized sound package. The results indicate that the optimized concept has maximum sound absorption capability.  Consequently, the proposed sound package improves the vehicle's engine noise reduction by 5 dB in comparison with un-optimized sample in mid and high frequency ranges.

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb