Search published articles



Dr. B. Mashadi, E. Zakeri,
Volume 1, Issue 1 (1-2011)
Abstract

In this paper, Front Engine Accessory Drive (FEAD) system of automotive engine is modeled with ADAMS software. The model is validated using engine test data. It is then used to investigate the effect of design parameters on the system performance such as belt vibration and loads on the idlers. Three alternative layouts were developed in order to improve the performance of original EEAD system. The validated model was used to study the effect of changes made to the layouts on the reduction of vibration and loads. Several system outputs indicated that for the modified layouts, large reductions in vibration and loads were achieved. It was concluded that one of proposed layouts was more appropriate and could be a useful substitution to the original layout. The developed model also proved useful for the design of engine FEAD systems and could be used for further developments.


J. Mahdavinia, A. Keshavarz, M.h. Moshrefi,
Volume 1, Issue 1 (1-2011)
Abstract

Turbocharging an engine boosts its power by increasing the amount of input air. This task is accomplished by using the exhaust gas to power a turbine which is engaged with a compressor. The Variable Geometry Turbocharger, VGT is a unique turbocharger that the diffuser vane angle can be changed over a wide range of positions. The mathematics of turbomachinery flow analysis is intensive and uses iterative methods. Most of the flow analyses in the area of turbochargers are either experimental or numerical. Three-dimensional Computational Fluid Dynamics (CFD), two-dimensional multiple streamline and one dimensional mean line is the three primary numerically available methods. In this paper a mean line method has been used for predicting the performance of a centrifugal compressor with variable diffuser vane angle position at subcritical Mach numbers. The calculation is based on common thermodynamic and aerodynamic principles, and empirical correlations for losses in a mean line analyses. The model calculates the velocities, pressures, temperatures, pressure losses, work consumption, and efficiencies for a specified set of turbocharger geometry, atmospheric conditions, rotational speed, and fluid mass flow rate. The obtained numerical results are validated with the in house measured experimental data and good agreement observed. The purpose for compressor model analysis is to generate overall characteristic map and identify the impact of the diffuser vane angles on the performance. The overall characteristic map is generated by this method demonstrate very good agreement and the effect of variable vane angle in pressure ratio and operating range observed.
E. Esmailzadeh, A. Goodarzii, M. Behmadi,
Volume 1, Issue 1 (1-2011)
Abstract

Improvement in braking performance and vehicle stability can be achieved through the use of braking systems whose brake force distribution is variable. Electronic braking force distribution has an important and serious role in the vehicle stopping distance and stability. In this paper a new approach will be presented to achieve the braking force distribution strategy for articulated vehicles. For this purpose, the mathematical optimization process has been implemented. This strategy, defined as an innovative braking force distribution strategy, is based on the wheel slips. The simulation results illustrate proposed strategy can significantly improve the vehicle stability in curved braking for different levels of vehicle deceleration
D. Younesian, A.a. Jafari, R. Serajian,
Volume 1, Issue 3 (5-2011)
Abstract

Nonlinear hunting speeds of railway vehicles running on a tangent track are analytically obtained using Hopf bifurcation theory in this paper. The railway vehicle model consists of nonlinear primary yaw dampers, nonlinear flange contact stiffness as well as the clearance between the wheel flange and rail tread. Linear and nonlinear critical speeds are obtained using Bogoliubov method. A comprehensive parametric study is then carried out and effects of different parameters like the magnitudes of lateral clearance, damping values, wheel radius, bogie mass, lateral stiffness and the track gauge on linear and nonlinear hunting speeds are investigated.
Sepehr Beigzadeh, Javad Marzbanrad,
Volume 8, Issue 3 (9-2018)
Abstract

Nowadays, lightweight automotive component design, regarding fuel consumption, environmental pollutants and manufacturing costs, is one of the main issues in the automotive societies. In addition, considering safety reasons, the durability of the automotive components, as one of the most important design requirements should be guaranteed. In this paper, a two-step optimization process including topology and shape optimization of an automotive wheel, as one of the most significant chassis components, is studied. At first, topology optimization method with volume and fatigue life constraints is used to obtain the optimal initial lightweight design, followed by shape optimization technique to improve the fatigue life. The results show 31.841% weight and 33.047% compliance reduction by topology and also 652.33% average minimum fatigue life enhancement, by the shape optimization. Therefore, the proposed two-step optimization method is qualified in designing the lightweight automotive wheel. The method used in this study can be a reference for optimization of other mechanical components.


Hesam Moghadasi, Sasan Asiaei,
Volume 8, Issue 3 (9-2018)
Abstract

This paper investigates 3D simulation of fluid flow in a centrifugal pump from the Detroit Diesel company to extract possible engine cooling trends.  The velocity and pressure profile of water, the coolant, is analyzed and the characteristic curves of the pump are derived. This provides a useful evaluation of the pump performance at all working conditions. For this aim, a computational fluid dynamic model is developed using ANSYS CFX for a wide span of flow rates and a number of shaft angular velocities. The variation of constituting parameters are examined using dimension-less descriptive parameters of flow, head and power coefficients, finally, the efficiency of the pump is examined. In this analysis, sst-k-w turbulent model is employed which is a combination of two different models for pumps and turbomachines. Numerical results show that prolonged cooling duty cycles of the vehicle should accompany a flow factor of 10%. In addition, the peak of the vehicle’s loading should match the maximum efficiency of the pump that can be increased to 62% by augmentation of flow rate and flow coefficient.
Dr Javad Sharifi, Ms Fereshte Vaezi,
Volume 9, Issue 2 (6-2019)
Abstract

    Modeling and identification of the system of Iranian cars is one of the most basic needs of automotive and consumer groups and has a broad role for safe driving. It has happened with speed increasing or changing of shift gear, effects on water temperature or the car's torque has been observed, but how much and how intensely and with what algorithm this effect is identifiable, can be modeled and controlled, because up to now an algorithm that can show these effects during driving has not existed that what reaction should be made by the vehicle when it occurs untimely.
    Identification of each automobile sector lonely has been considered in recent decades, and in some cases, some relationships have been investigated, but from a control point of view, the lack of comprehensive effects of all parts of a car on the other parts is to get an identification algorithm in the automotive industry, and it requires more in-depth studies, because the complexity of the behavior of different parts of the car has made many attempts not fully understandable. Hear it's supposed to control different parameters of Iranian vehicles by using LS estimation and fuzzy logic controller and the simulation is done in Matlab software by storing and validating data of a Dena vehicle through CAN network.
Morteza Montazeri, Masoud Khasheinejad, Dr. Zeinab Pourbafarani,
Volume 9, Issue 2 (6-2019)
Abstract

Hardware implementation of the Plug-in hybrid electric vehicles (PHEVs) control strategy is an important stage of the development of the vehicle electric control unit (ECU). This paper introduces Model-Based Design (MBD) approach for implementation of PHEV energy management. Based on this approach, implementation of the control algorithm on an electronic hardware is performed using automatic code generation. The advantages of the MBD in comparison with the traditional methods are the capability of eliminating the manual coding complexities as well as compiling problems and reducing the test duration. In this study, hardware implementation of a PHEV rule-based control strategy is accomplished using MBD method. Also, in order to increase the accuracy of the results of the implementation, the data packing method is used. In this method, by controlling the primer and end data of the data packet transferred between the electronic board and the computer system, the noisy data is prevented from entering. In addition, to verify the performance of the implemented control strategy, hardware-in-the-loop (HIL) simulation is used with the two frequency rates. The results show the effectiveness of the proposed approach in correct and rapid implantation procedure.
Mr. Amid Maghsoudi, Dr. Esmaeel Khanmirza, Mr. Farshad Gholami,
Volume 10, Issue 3 (9-2020)
Abstract

Traffic control is a major and common problem in large-scale urban decision-making, particularly in metropolises. Several models of intelligent highways have been proposed to tackle the issue, and the longitudinal speed control of vehicles remains a key issue in the field of intelligent highways. Many researchers have been investigating the longitudinal speed control of vehicles. However, their proposed models disregard important and influential presumptions. In the present study, the longitudinal dynamics control of vehicles in the presence of nonlinear factors, such as air resistance, rolling resistance, a not ideal gearbox, an internal combustion engine and a torque converter, is investigated. Moreover, considering the presented model and using model reference adaptive control, a proper controller is designed to control the longitudinal speed of intelligent vehicles. The results of the proposed model, which is validated by commercial software, are in good agreement with real-world situations. Hence, a positive step is taken for controlling longitudinal speed of intelligent vehicles on an intelligent highway platform.
Vahid Nooraeefar, Nader Nariman-Zadeh, Abolfazl Darvizeh,
Volume 12, Issue 3 (9-2022)
Abstract

Connecting point of the longitudinal veins and cross-veins in wing is called Joint.  In some insect wing joints, there is a type of rubber-like protein called Resilin. Due to the low Young's modulus of this protein, its presence in the wing can help to change the shape of the wing during flight. Today, using composite structures in flying vehicles in order to achieve the desired shape of wing is considered. The purpose of this study is the multi-objective optimization of artificial wing by arranging Resilin joints in the artificial wing of Micro air vehicles (MAVs). The amount of torsion and bending of the flapping robot wings is considered as the objective function to improve the flight performance of robots. Two types of artificial wings have been investigated, and considering pareto points, the optimal arrangement of Resilin joints has been achieved.  The result of this study shows that in both wings, with the presence of Resilin in the joints, the amount of torsion has increased to 38.65 degrees.
 

Page 1 from 1     

© 2022 All Rights Reserved | Automotive Science and Engineering

Designed & Developed by : Yektaweb