
Automotive Science and Engineering, Vol. 15, No. 3, (2025),  4833-4854 

*Corresponding Author: Peyman Bayat 

Email Address: peyman.bayat@hut.ac.ir 

https://doi.org/10.22068/ase.2025.722                                                              

“Automotive Science and Engineering” is licensed under 

a Creative Commons Attribution-Noncommercial 4.0 

International License.   

 

Hierarchical Nested Cascade Control Framework for Enhanced Energy Management in 

Fuel Cell Hybrid Electric Vehicles 

Peyman Bayat1*, Pezhman Bayat2 

1,2Department of Electrical Engineering, Hamedan University of Technology, Hamedan, Iran 

ARTICLE INFO  A B S T R A C T 

Article history:  

Received : 23 Mar 2025 

Accepted: 30 Aug 2025 

Published: 29 Sep 2025 

 

 

This study proposes a hierarchical nested cascade control framework to 

enhance voltage regulation and current management in fuel cell hybrid 

electric vehicles (FCHEVs). The architecture addresses limitations of 

conventional cascade control by reducing design complexity and 

improving resilience under dynamic and uncertain conditions. It 

integrates three coordinated layers: an outer control level (OCL) 

employing an adaptive proportional–integral controller for DC bus 

voltage regulation, and two internal layers, middle (MCL) and inner 

(ICL), implemented via backstepping controllers for precise current 

control of fuel cells, batteries, and supercapacitors. By combining 

nonlinear control with model reference adaptive control, the system 

dynamically tunes parameters to maintain voltage stability across 

variable load profiles. Simulations using the WLTC-Class 3 cycle show 

that the proposed strategy (Case 1) achieves superior battery 

sustainability, with a final SOC of 74.2%, compared to 71% and 72.5% 

in benchmark strategies (Cases 2 and 3). Under battery aging (20% 

increased resistance, 15% reduced capacity), DC bus voltage remains 

within ±3.5 V of the 380 V reference, with only 18% ripple increase and 

0.8% additional SOC depletion. A resilience index of 96.5% confirms 

robustness, outperforming benchmarks (84.2%, 89.7%). To further 

validate performance under real-world urban conditions, date-specific 

driving cycles tailored for Shiraz city were employed. Results confirm 

the framework’s effectiveness in sustaining stability, efficiency, and 

scalability for next-generation FCHEV energy systems. 
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1. Introduction 
Conventional internal combustion engine 

vehicles, primarily reliant on fossil fuels, are 

major contributors to greenhouse gas emissions 

and urban air pollution; transitioning to clean and 

energy-efficient electric vehicles (EVs) offers a 

technically feasible and environmentally 

responsible solution, in line with international 

decarbonization strategies aimed at mitigating 

climate change [1]. In EV applications, energy 

demand exhibits significant variability, influenced 

by both driving conditions and driver behavior. 

Typically, a sole primary energy source lacks the 

responsiveness required to manage rapid 

fluctuations in demand, which can accelerate 

system degradation and reduce operational 

lifespan; consequently, multi-source energy 

systems are often employed to enhance reliability 

and dynamic performance. 

Among the various energy sources gaining 

increased attention, proton exchange membrane 

fuel cells (PEMFCs) have emerged as a focal 

point due to their high efficiency, environmental 

benefits, and suitability for transportation 
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applications. PEMFCs offer a clean alternative by 

converting chemical energy into electricity 

through an electrochemical process, generating 

only water and heat as byproducts [2]. These 

features position them as promising candidates for 

addressing the energy and environmental 

challenges associated with transportation. Fuel 

cell electric vehicles (FCEVs) are particularly 

notable for their extended driving range, short 

refueling times, silent operation, and zero local 

emissions [3]. As a result, interest in FCEVs is on 

the rise among researchers. However, FCEVs also 

face technical hurdles such as slow transient 

response and inability to recuperate braking 

energy. To address these limitations, integrating 

energy storage systems (ESS) such as batteries 

and supercapacitors (SC) through hybridization 

has emerged as a practical approach [4]. 

SCs demonstrate remarkable energy storage 

properties, including rapid charge and discharge 

capability, extended lifecycle, and stable 

performance across diverse temperature ranges, 

rendering them well-suited for high-power and 

repetitive cycling applications. Conversely, 

lithium-ion batteries are distinguished by their fast 

response times, low self-discharge rates, long 

cycle life, and high energy density. Moreover, 

implementing an appropriate liquid cooling 

system remains a key challenge, as it plays a 

crucial role in ensuring uniform temperature 

distribution and effective heat dissipation [5]. 

 These ESSs are frequently integrated into 

hybrid configurations to address the limitations 

associated with standalone FCEVs. When paired 

these ESS with PEMFCs, the resulting 

configuration is referred to as a fuel cell hybrid 

electric vehicle (FCHEV). In multi-source energy 

systems, optimal allocation of power across 

various sources must be managed based on their 

dynamic response characteristics. Hence, given 

the distinct operating characteristics of PEMFCs 

and ESSs, an energy management strategy (EMS) 

is critical for optimal power distribution. Various 

EMSs are designed based on system-specific 

goals, each carrying its own merits and 

limitations. The study outlined in [6] centers on 

the creation of a simulation model for a FCHEV 

traction system, developed using the MATLAB 

Simulink environment. The research investigates 

various topological configurations of battery 

systems and hybrid traction architectures. The 

proposed model employs a PEMFC as the 

principal energy source. To accommodate the 

irregularities in transport load demand, a high-

performance buffer storage unit based on lithium-

titanium-oxide battery technology is integrated 

into the system design. 

Recent studies have placed growing emphasis 

on the development of EMS, with a particular 

focus on heuristic rule-based approaches that do 

not involve optimization techniques [7, 8]. These 

systems function in real-time without predictive 

driving data but depend on predefined logic rules 

based on battery state of charge (SOC) and load 

requirements. Although simple to implement, 

these approaches are reliant on designer expertise 

and offer limited optimization [9]. Optimization-

based EMSs are typically classified into global 

and instantaneous methods. Instantaneous 

schemes, such as the equivalent consumption 

minimization strategy, can operate without prior 

data, demand fewer computational resources, and 

support real-time power management [10]. 

Conversely, global methods, like dynamic 

programming (DP), require complete knowledge 

of driving profiles, which is impractical due to 

inherent unpredictability in real-world vehicle 

operation. Thus, globally optimized EMSs are 

mostly used as reference models for performance 

evaluation [11]. Article [12] introduced a dynamic 

rule-based control approach that adapts to load 

conditions and integrates an optimal control 

scheme derived through DP, enabling efficient 

real-time energy management. Despite 

effectiveness of DP, the dynamic rule-based 

control strategy presents certain limitations. The 

reliance on predefined rules may constrain 

adaptability under highly unpredictable load 

variations or novel operational scenarios. 

Furthermore, while dynamic programming offers 

optimal control capabilities, its computational 

complexity can hinder real-time implementation, 

particularly in systems with high dimensionality 

or constrained processing resources. 

Article [13] developed a reinforcement learning 

framework tailored for FCHEVs equipped with 

batteries and SCs. The system employs a fuzzy 

filtering mechanism to layer the SC power 

signals, while the equivalent consumption 

minimization strategy algorithm strikes a balance 

between holistic learning processes and real-time 

applicability. This approach enhances 

computational efficiency, suppresses fluctuations 

in fuel cell (FC) output, and improves fuel 

economy. While this approach provides a balance 

between global learning and real-time application, 

it might not always guarantee optimality under 

rapidly changing driving conditions. 

Another core challenge lies in dynamically 

optimizing PEMFC output, as multi-physical 

systems whose performance fluctuates with 
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operational conditions [14]. The optimal output 

power point, such as the highest efficiency 

operating level, continually shifts within the 

system’s working space. Operating PEMFCs 

within high-efficiency zones not only conserves 

energy but also prolongs lifespan [15]. Real-time 

adaptation of FC parameters is therefore 

necessary, which can be achieved via online 

identification techniques such as recursive least 

squares or the extended Kalman filter algorithm 

[16]. A key shortcoming of this approach lies in 

its limited capacity for real-time adaptation of FC 

parameters, which are highly sensitive to 

operational conditions. 

In a novel and inventive approach, [17] 

proposed an integral backstepping control method 

in conjunction with a rule-based EMS for battery–

SC hybrid EVs. However, relying exclusively on 

rule-based management is often suboptimal [18], 

particularly due to the nature of power allocation 

among the vehicle’s energy sources, which 

includes both low and high-frequency 

components. When batteries are subjected to high-

frequency power demands, their operational 

lifespan may be compromised, leading to 

accelerated degradation. Moreover, while the 

backstepping approach offers indirect regulation 

of the DC-bus voltage, it adds considerable 

complexity to both the controller’s architecture 

and functional dynamics. This stems from the 

need to develop dedicated virtual controllers for 

each system state variable, which fosters intricate 

interactions between the virtual controllers and 

their physical counterparts. Such complexities 

may trigger unexpected oscillations or instability 

under specific operating scenarios, most notably 

during mode transitions between propulsion and 

regenerative braking phases [18]. 

Recent studies have underscored the critical 

need for multidimensional failure modeling in 

lithium-ion battery packs deployed in electric 

vehicles, especially under demanding operational 

stress conditions. Within this framework, the 

fuzzy logic-based failure mode and effects 

analysis method proposed in [19] provides 

meaningful insights into key failure contributors, 

including sealing integrity, battery management 

system performance, thermal regulation 

efficiency, and mechanical assembly robustness. 

These findings collectively reinforce the 

imperative of embedding fault-tolerant strategies 

into control architectures to enhance system 

reliability, safety, and longevity. Such integration 

not only mitigates potential risks but also ensures 

sustained performance across diverse operating 

environments and evolving vehicular demands. 

In Article [20], a new hybrid cascade control 

framework combining proportional–integral (PI) 

and backstepping methods was introduced to 

manage DC-bus voltage in the presence of 

uncertainties and fluctuating loads, while also 

handling current reference tracking for the 

onboard energy sources. Although this 

configuration is simpler than purely backstepping-

based designs, it remains technically demanding 

in terms of implementation and fine-tuning, 

particularly during rapid operational transitions 

where coordination between controllers becomes 

critical. Furthermore, the PI controller’s reliance 

on linear assumptions and fixed gain parameters 

limits its adaptability in highly nonlinear or fast-

changing environments, often necessitating 

manual recalibration for sustained performance. 

To address limitations highlighted in earlier 

research, a new hierarchical nested cascade 

control framework is introduced. This approach 

aims to overcome previously noted design 

complexities while delivering a practical and 

resilient solution. It is specifically tailored for 

effective DC bus voltage regulation and current 

management in battery–SC systems, particularly 

under the variable power loads encountered in 

real-world driving scenarios. This method 

capitalizes on the distinct advantages offered by 

hierarchical nested cascade control based 

nonlinear control and adaptive PI (API) control 

that adjusts the parameter of controller in real-

time to optimize performance and regulate the DC 

bus voltage under varying operating conditions or 

system uncertainties. In contrast, the nested 

cascade controller is tasked with handling current 

control for each energy source (FC, SC and 

battery), owing to its robust capability in 

managing system uncertainties and ensuring 

stable performance under dynamic and transient 

operating conditions. By integrating these two 

techniques, the control system directly utilizes 

physical control inputs, thereby eliminating the 

need for virtual controllers. This simplification 

reduces internal structural complexity and 

prevents adverse interactions between control 

layers. As a result, the system maintains robust 

operation across varying conditions and ensures 

seamless transitions between traction and 

regenerative braking modes. 

• A novel hierarchical nested cascade control 

structure is proposed to reduce design 

complexity and improve system resilience in 

FCHEV applications, effectively addressing 

the shortcomings of traditional cascade 

control approaches. 
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• The system integrates nonlinear hierarchical 

control with API regulation, leveraging a 

model reference adaptive control (MRAC) 

framework to enable real-time tuning of 

control parameters. This architecture ensures 

optimized DC bus voltage regulation across a 

wide range of load conditions and operational 

uncertainties. 

• A dedicated nested cascade controller using 

three distinct backstepping (BS) controller 

manages current control for FCs, SCs, and 

batteries, leveraging its robustness against 

uncertainties and performance during 

dynamic transitions. 

• By directly applying physical control inputs, 

the approach avoids virtual controllers, 

simplifying internal architecture and 

minimizing interference between control 

layers. 

• The overall system ensures stable operation 

and smooth switching between traction and 

regenerative braking, even under 

unpredictable power demands seen in real 

driving environments. 

The structure of the article is as follows: Section 

2 details the FCHEV components, Section 3 

outlines the proposed EMS, Section 4 presents the 

input data and simulation outcomes, and Section 5 

concludes the study. 

2. System framework 
In the context of FCHEVs, energy demand is 

highly variable, influenced by external factors 

such as road conditions and traffic patterns, as 

well as internal ones like individual driving 

habits. Such volatility necessitates an adaptive 

EMS within multi-source architectures, where 

power allocation must be strategically distributed 

in accordance with the transient behavior and 

response capabilities of each energy source. 

The FC, commonly employed as the central 

power generation unit, is generally optimized for 

steady-state operation. It lacks the responsiveness 

needed to meet abrupt power demands, and if 

forced to do so repeatedly, it can suffer 

accelerated degradation, resulting in reduced 

efficiency, power and shortened service life. 

Consequently, the system integrates 

complementary energy sources capable of 

absorbing sudden load changes and responding 

rapidly to peak demands. 

To achieve this hybrid synergy, the proposed 

system, illustrated schematically in Fig. 1, 

employs a FC connected to the DC bus via an 

interleaved boost converter, offering improved 

conversion efficiency and reduced ripple. Parallel 

to this, the ESS comprises high-dynamic elements 

such as battery packs and SC arrays, each 

interfaced with the DC bus through bidirectional 

buck-boost converters. These storage units handle 

fast transients and short-term load variations 

while supporting the primary unit during demand 

spikes. 

The vehicle’s propulsion subsystem includes a 

three-phase inverter coupled to an AC 

synchronous motor. This arrangement enables 

fine-grained control over mechanical output, 

allowing modulation of speed and torque 

according to real-time driving conditions and 

control algorithms. Together, this architecture 

forms a robust energy framework capable of 

responding dynamically to the fluctuating power 

needs of FCHEV operation. 

Traction 
Motor

FC

D
C

 B
U

S

Inverter

Bi-directional 

buck-boost DC/DC 

converter

Interleaved boost 

DC/DC converter

Battery

SC

Bi-directional 

buck-boost DC/DC 

converter

EMS
Calculation of requested power

Driving cycleESS
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 Figure 1: System architecture diagram of a 

FCHEV with three integrated power sources 

2.1. Mathematical Modeling of FC Output 

Voltage (PEMFC) 

The output voltage of a FC (𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 ) is determined 

by the Nernst equation, accounting for activation, 

ohmic, and concentration losses [21]: 

𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 = 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜ℎ𝑚 − 𝜂𝑐𝑜𝑛𝑐 (1) 

𝐸𝑁𝑒𝑟𝑛𝑠𝑡 = 𝐸𝑐𝑒𝑙𝑙
0 +
𝜅𝑇

2𝐹
ln (
𝑃𝐻2 ⋅ √𝑃𝑂2
𝑃𝐻2𝑂

) (2) 

For dry hydrogen supplied at pressure 𝑃𝑎𝑛𝑜𝑑𝑒, 
the partial pressure of hydrogen (𝑃𝐻2) is 

calculated using (3). An increase in 𝑃𝐻2 enhances 

the Nernst potential and overall system 

performance; however, excessively high pressure 

may induce membrane mechanical stress. 

𝑃𝐻2 = 𝑃𝑎𝑛𝑜𝑑𝑒 − 𝑃𝐻2𝑂
𝑎𝑛𝑜𝑑𝑒 (3) 

The partial pressure of oxygen (𝑃𝑂2) is 

determined using (4). An elevated 𝑃𝑂2 improves 
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reaction kinetics and mitigates activation losses, 

thereby contributing to enhanced electrochemical 

performance. 

𝑃𝑂2 = 𝑦𝑂2(𝑃𝑐𝑎𝑡ℎ𝑜𝑑𝑒 − 𝑃𝐻2𝑂
𝑐𝑎𝑡ℎ𝑜𝑑𝑒) (4) 

The vapor pressure of water within the FC is 

governed by operating humidity and temperature 

conditions. Accordingly, the partial pressure of 

water (𝑃𝐻2𝑂) is computed using (5) and (6). 

𝑃𝐻2𝑂 = 𝑅𝐻 ⋅ 𝑃𝐻2𝑂
𝑠𝑎𝑡  (5) 

𝑃𝐻2𝑂
𝑠𝑎𝑡 = 10𝐴−

𝐵
𝑇+𝐶 (6) 

where, A, B, C are substance-specific empirical 

constants. In this investigation, for temperature in 

Kelvin and saturated water vapor pressure (𝑃𝐻2𝑂
𝑠𝑎𝑡 ) 

in 𝑏𝑎𝑟, these coefficients are defined as: 𝐴 =
5.40221, 𝐵 = 1838.675 and 𝐶 = −31.737. 

Due to sluggish electrode kinetics activation 

losses (𝜂𝑎𝑐𝑡) are determined as expressed in (7). 

𝜂𝑎𝑐𝑡 =
𝜅𝑇

𝛼𝑛𝐹
ln (
𝑗

𝑗0
) (7) 

Resistive losses (𝜂𝑜ℎ𝑚), commonly referred to 

as Ohmic losses, arise from the internal resistance 

within the electrolyte and associated components, 

as characterized in (8). 

𝜂𝑜ℎ𝑚 = 𝑗 ⋅ 𝑅𝑜ℎ𝑚
𝐹𝐶  (8) 

Mass transport limitations at high current 

densities can be defined as follows: 

𝜂𝑐𝑜𝑛𝑐 =
𝜅𝑇

𝑛𝐹
ln (1 −

𝑗

𝑗𝐿
) (9) 

Combining all terms in (1), (2), (7)-(9) yields: 

𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 = 𝐸𝑁𝑒𝑟𝑛𝑠𝑡 −

𝜅𝑇

𝑛𝐹
[
1

𝛼
ln (
𝑗

𝑗0
)

+ ln (1 −
𝑗

𝑗𝐿
)] − (𝑗 ⋅ 𝑅𝑜ℎ𝑚

𝐹𝐶 ) 
(10) 

2.2. Mathematical Modeling of Lithium-ion 

(Li-ion) Batteries 

The SOC represents the remaining charge in the 

battery as a percentage of its total capacity. It is 

computed using the Coulomb counting method 

with possible corrections for efficiency and aging 

[22]: 

𝑆𝑂𝐶(𝑡) = 𝑆𝑂𝐶0 −
1

𝑄𝐵𝑎𝑡
𝑛𝑜𝑚∫ 𝜂𝐶

𝑡

0

⋅ 𝐼𝐵𝑎𝑡(𝑡) 𝑑𝑡 (11) 

where, 𝜂𝐶 is the coulombic efficiency and 

considered 0.98 for a typical Li-ion battery [23]. 

The open-circuit voltage (OCV), denoted as 

𝑉𝑂𝐶
𝐵𝑎𝑡, represents the battery's equilibrium voltage 

corresponding to a specific SOC. Its behavior is 

inherently nonlinear and can be mathematically 

characterized by (12). 

𝑉𝑂𝐶
𝐵𝑎𝑡(𝑆𝑂𝐶) = 𝑎 + 𝑏 ⋅ 𝑆𝑂𝐶 + 𝑐 ⋅ 𝑒𝑑⋅𝑆𝑂𝐶 (12) 

where the fitted coefficients 𝑎 = 3, 𝑏 = 0.6, 𝑐 =
0.2, and 𝑑 = −5 are calibrated for a typical Li-ion 

battery [23]. 

The actual terminal voltage of the battery under 

load, denoted as 𝑉𝑇
𝐵𝑎𝑡, is influenced by both 

instantaneous and transient phenomena [24]. 

Specifically, it accounts for: (1) Ohmic drop, 

resulting from internal resistance and manifesting 

as an immediate voltage reduction upon load 

application, and (2) Polarization effects, 

encompassing slower electrochemical dynamics 

that contribute to the transient voltage response. 

Mathematically, this relationship can be 

represented as: 

𝑉𝑇
𝐵𝑎𝑡 = 𝑉𝑂𝐶

𝐵𝑎𝑡(𝑆𝑂𝐶) − 𝐼𝐵𝑎𝑡𝑅0 − 𝑉𝑅𝐶1 − 𝑉𝑅𝐶2 (13) 

In the aforementioned expression, 𝑉𝑇
𝐵𝑎𝑡 

accounts for three key components: (1) Ohmic 

loss (𝐼𝐵𝑎𝑡 ⋅ 𝑅0): Represents the instantaneous 

voltage drop due to the internal resistance 𝑅0. 
This parameter is typically measured using 

current pulse tests under controlled conditions; (2) 

Polarization voltage (𝑉𝑅𝐶1): Captures the short-

term transient response arising from charge 

transfer kinetics. It is commonly modeled as a 

first-order RC circuit, reflecting the 

electrochemical dynamics during load transitions 

(see (14)); (3) Diffusion voltage (𝑉𝑅𝐶2): Reflects 

long-term electrochemical dynamics arising from 

ion diffusion within the electrolyte. As presented 

in (15), this behavior is commonly captured using 

a second RC circuit, supplementing the short-term 

transient model to account for gradual voltage 

evolution under sustained load conditions 

𝑉𝑅𝐶1 = 𝐼𝐵𝑎𝑡 ⋅ 𝑅1(1 − 𝑒
−𝑡/𝜏1) (14) 

𝑉𝑅𝐶2 = 𝐼𝐵𝑎𝑡 ⋅ 𝑅2(1 − 𝑒
−𝑡/𝜏2) (15) 

where, 𝜏1 = 𝑅1𝐶1 and 𝜏2 = 𝑅2𝐶2. 
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For simulation and control purposes, the 

equivalent circuit model can be reformulated in 

state-space representation, as presented in (16) 

and (17). This form enables systematic analysis 

and design of control strategies, facilitating 

numerical implementation in dynamic 

environments. Fig. 2 presents the battery 

modeling circuit diagram, constructed based on 

the previously described modeling approach. 

𝑑𝑉𝑅𝐶1
𝑑𝑡
=
𝐼𝐵𝑎𝑡
𝐶1
−
𝑉𝑅𝐶1
𝑅1𝐶1

 (16) 

𝑑𝑉𝑅𝐶2
𝑑𝑡
=
𝐼𝐵𝑎𝑡
𝐶2
−
𝑉𝑅𝐶2
𝑅2𝐶2

 (17) 

𝑉𝑇
𝐵𝑎𝑡  

𝑅0 

𝑅1 𝑅2 

𝐶1 𝐶2 

∫
𝑡

0

 

𝑉𝑂𝐶
𝐵𝑎𝑡 (𝑆𝑂𝐶) 

𝑰𝑩𝒂𝒕 

Figure 2: Modeling of Li-ion Battery cells 

2.3. Fundamental Models of SCs 

  The two-branch RC model is commonly 

employed to characterize the dual charge storage 

mechanisms in SCs, capturing both the rapid 

(immediate) and slower (diffusion-dependent) 

electrochemical dynamics. Fig. 3 presents the SC 

modeling circuit diagram. The equivalent series 

resistance 𝑅𝑆𝐶1 models the fast response, while 

the capacitance 𝐶𝑆𝐶1 accounts for surface charge 

accumulation via the double-layer effect. 

Conversely, the delayed charge branch (slow 

dynamics) is characterized by 𝑅𝑆𝐶2, representing 

diffusion resistance in porous electrodes, and 

𝐶𝑆𝐶2, capturing deep charge storage within the 

electrode pores. In addition, the leakage resistance 

𝑅𝑆𝐶𝐿 is placed in parallel with 𝐶𝑆𝐶2 to model the 

self-discharge phenomenon, characterized by a 

gradual voltage decay during idle periods. The 

internal resistance 𝑅𝑆𝐶𝑆 comprises contributions 

from both the electrolyte and the contact 

interfaces between the electrodes and current 

collectors, and is responsible for the instantaneous 

voltage drop observed upon current application 

(see (18)). It is important to note that the 

parameters of this model, particularly the 

resistances 𝑅𝑆𝐶𝑆, 𝑅𝑆𝐶1, 𝑅𝑆𝐶2, and the capacitances 

𝐶𝑆𝐶1, 𝐶𝑆𝐶2, are strongly influenced by operational 

conditions such as temperature. While the 

simulations in this study utilize parameter values 

representative of a standard operating 

temperature, the model's structure is inherently 

suitable for analyzing thermal effects. The 

dependency of these parameters on temperature 

can be incorporated based on empirical 

characterization, allowing the model to predict SC 

behavior across a wider range of environmental 

scenarios. 

𝑉𝑅𝑠(𝑡) = 𝐼(𝑡) ⋅ 𝑅𝑆𝐶𝑆(𝑇) (18) 

𝑅SCS  𝑅SC 1 

𝐶SC 2 
𝑉𝑇
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Figure 3: Modeling of SC cells 

The fast charging/discharging dynamics are 

characterized by the time constant 𝜏SC1 =
𝑅SC1𝐶SC1, as presented in (19), while the slower 

internal charge redistribution is governed by the 

time constant 𝜏SC2 = 𝑅SC2𝐶SC2, detailed in (20). 

𝑉𝑅𝑎(𝑡) = 𝐼𝑆𝐶1(𝑡)𝑅𝑆𝐶1(T)

+
1

𝐶𝑆𝐶1(𝑇)
∫ 𝐼𝑆𝐶1(𝑡) 𝑑𝑡 (19) 

𝑉𝑆𝑙(𝑡) = 𝐼𝑆𝐶2(𝑡)𝑅𝑆𝐶2(𝑇)

+
1

𝐶𝑆𝐶2(𝑇)
∫ 𝐼𝑆𝐶2(𝑡) 𝑑𝑡 (20) 

The total current divides among the respective 

branches, as presented in (21), while the terminal 

voltage and leakage current are presented in (22) 

and (23), respectively. 

𝐼𝑆𝐶(𝑡) = 𝐼𝑆𝐶1(𝑡) + 𝐼𝑆𝐶2(𝑡) (21) 

𝑉𝑇
𝑆𝐶(𝑡) = 𝐼𝑆𝐶(𝑡)𝑅𝑆𝐶𝑆(𝑇) + 𝑉𝐶𝑆𝐶1(𝑡)

+ 𝑉𝐶𝑆𝐶2(𝑡) 
(22) 

𝐼𝑆𝐶𝐿(𝑡) =
𝑉𝐶𝑆𝐶2(𝑡)

𝑅𝑆𝐶𝐿(𝑇)
 (23) 

For the fast and slow branch charging 

processes, the respective intended voltages are 

presented in (24) and (25). By incorporating the 

initial voltage drop across the series resistance, 

given by 𝑉𝑆𝐶(0
+) = 𝐼𝑆𝐶0𝑅𝑆𝐶𝑆, the total voltage at 

the SC terminal can then be expressed as (26). 

𝑉𝐶𝑆𝐶1(𝑡) = 𝐼𝑆𝐶0𝑅𝑆𝐶1(𝑇)(1 − 𝑒
−𝑡/𝜏𝑆𝐶1) (24) 
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𝑉𝐶𝑆𝐶2(𝑡) = 𝐼𝑆𝐶0𝑅𝑆𝐶2(𝑇)(1 − 𝑒
−𝑡/𝜏𝑆𝐶2) (25) 

𝑉𝑇
𝑆𝐶(𝑡) = 𝐼𝑆𝐶0[𝑅𝑆𝐶𝑆(T) + 𝑅𝑆𝐶1(T)(1

− 𝑒−𝑡/𝜏𝑆𝐶1) + 𝑅𝑆𝐶2(T)(1
− 𝑒−𝑡/𝜏𝑆𝐶2)] 

(26) 

2.4. Bidirectional buck-boost DC-DC converter 

Fig. 4 illustrates the comprehensive design and 

overall structural configuration of the 

bidirectional buck-boost DC-DC converter. This 

power converter positioned near the two input 

sources (battery and SC) functions in boost mode 

during energy discharge (𝐼𝑖𝑛−𝑅𝑒𝑓 > 0) when 

switch 𝑆1 is activated while 𝑆2 remains inactive. 

Conversely, if 𝑆1 is turned off and 𝑆2 is engaged, 

the converter shifts to buck mode, thereby 

charging the sources (𝐼𝑖𝑛−𝑅𝑒𝑓 < 0). To formally 

characterize these operational states, charging and 

discharging, a binary variable 𝛽 is introduced as 

follows [25]: 

β = {
0, 𝐼𝑖𝑛−𝑅𝑒𝑓 < 0 

1, 𝐼𝑖𝑛−𝑅𝑒𝑓 > 0
 (27) 

The parameter 𝐼𝑖𝑛−𝑅𝑒𝑓 represents the reference 

current drawn from the input energy sources, 

serving as a key control variable. Under the boost 

configuration, corresponding to the discharging 

mode, the system’s dynamic response is governed 

by the coupled nonlinear differential equations 

outlined in expressions (28) and (29), enabling 

precise modeling. 

𝑅𝑤  

𝐶DC  
𝑉𝑖𝑛  

𝐿w  

𝑑1 

𝑑2 

𝐼𝑖𝑛  

𝐼𝑜𝑢𝑡  

 

Figure 4: Overall structural configuration of the 

bidirectional buck-boost DC-DC converter 

𝑑𝑖𝑖𝑛
𝑑𝑡
=
𝑉𝑖𝑛
𝐿𝑤
−
𝑅𝑤
𝐿𝑤
𝑖𝑖𝑛 − (1 − 𝑑1)

𝑉𝐷𝐶
𝐿𝑤

 (28) 

𝑑𝑉𝐷𝐶
𝑑𝑡
= (1 − 𝑑1)

𝑖𝑖𝑛
𝐶𝐷𝐶
−
𝑖𝑜𝑢𝑡
𝐶𝐷𝐶

 (29) 

In this context, 𝑖𝑖𝑛 denotes the current entering 

the system, while 𝑉𝑖𝑛 and 𝑉𝐷𝐶 correspond to the 

source voltage and the DC bus voltage, 

respectively. The control signal is represented by 

𝑑1, and 𝑖𝑜𝑢𝑡 signifies the converter’s output 

current. The parameters 𝐿𝑤 and 𝑅𝑤 refer to the 

input-side wiring inductance and resistance of the 

energy sources, respectively. 𝐶𝐷𝐶 indicates the 

capacitance of the DC bus. 

The governing equations for buck-mode 

dynamics during charging are given by: 

𝑑𝑖𝑖𝑛
𝑑𝑡
=
𝑉𝑖𝑛
𝐿𝑤
−
𝑅𝑖𝑛
𝐿𝑤
𝑖𝑖𝑛 − 𝑑2

𝑉𝐷𝐶
𝐿𝑤

 (30) 

𝑑𝑉𝐷𝐶
𝑑𝑡
= 𝑑2
𝑖𝑖𝑛
𝐶𝐷𝐶
−
𝑖𝑜𝑢𝑡
𝐶𝐷𝐶

 (31) 

Here, 𝑑2 denotes the control input associated 

with buck-mode operation. A unified global 

model for the converter is derived by combining 

the charging and discharging modes as follows: 

𝑑𝑖𝑖𝑛
𝑑𝑡
=
𝑉𝑖𝑛
𝐿𝑤
−
𝑅𝑤
𝐿𝑤
𝑖𝑖𝑛 − δ

𝑉𝐷𝐶
𝐿𝑤

 (32) 

𝑑𝑉𝐷𝐶
𝑑𝑡
= 𝛿
𝑖𝑖𝑛
𝐶𝐷𝐶
−
𝑖𝑜𝑢𝑡
𝐶𝐷𝐶

 (33) 

Here, 𝛿 is a final control signal defined as: 

𝛿 = 𝛽(1 − 𝑑1) + (1 − 𝛽)𝑑2 (34) 

This approach ensures smooth switching 

between charge and discharge states, with 

sustained regulation of the system’s dynamic 

behavior. Consequently, the input expressions for 

the battery and SC can be reformulated, as 

indicated in equations (35)-(40). Eventually, the 

terminal value of the ESS current is determined 

using (41), and the global model for ESS is 

obtained in (42). In the present investigation, the 

ESS exhibits a multi-input multi-output (MIMO) 

architecture with dynamically nonlinear behavior, 

which substantially increases the complexity of 

achieving control objectives. Moreover, 

regulating the output power of the primary source 

(FC) constitutes a core control objective, yet the 

system’s inherent nonlinearities and 

interdependencies further intensify the associated 

challenges. 

𝑑𝐼𝐵𝑎𝑡
𝑑𝑡
=
𝑉𝑇
𝐵𝑎𝑡

𝐿𝑤1
−
𝑅𝑤1
𝐿𝑤1
𝐼𝐵𝑎𝑡 − δ𝐵𝑎𝑡

𝑉𝐷𝐶
𝐿𝑤1

 (35) 
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𝑑𝑉𝐷𝐶
𝑑𝑡
= δ𝐵𝑎𝑡

𝐼𝐵𝑎𝑡
𝐶𝐷𝐶
−
𝑖𝑜𝑢𝑡1
𝐶𝐷𝐶

 (36) 

δ𝐵𝑎𝑡 = 𝛽𝐵𝑎𝑡(1 − 𝑑1
𝐵𝑎𝑡) + (1 − 𝛽𝐵𝑎𝑡)𝑑2

𝐵𝑎𝑡 (37) 

𝑑𝐼𝑆𝐶
𝑑𝑡
=
𝑉𝑇
𝑆𝐶

𝐿𝑤2
−
𝑅𝑤2
𝐿𝑤2
𝐼𝑆𝐶 − δ𝑆𝐶

𝑉𝐷𝐶
𝐿𝑤2

 (38) 

𝑑𝑉𝐷𝐶
𝑑𝑡
= δ𝑆𝐶

𝐼𝑆𝐶
𝐶𝐷𝐶
−
𝑖𝑜𝑢𝑡2
𝐶𝐷𝐶

 (39) 

δ𝑆𝐶 = 𝛽𝑆𝐶(1 − 𝑑1
𝑆𝐶) + (1 − 𝛽𝑆𝐶)𝑑2

𝑆𝐶 (40) 

𝑖𝑜𝑢𝑡
𝐸𝑆𝑆 = 𝑖𝑜𝑢𝑡1 + 𝑖𝑜𝑢𝑡2 (41) 

𝑑𝑉𝐷𝐶
𝑑𝑡
= δ𝐵𝑎𝑡

𝐼𝐵𝑎𝑡
𝐶𝐷𝐶
−
𝑖𝑜𝑢𝑡
𝐸𝑆𝑆 − δ𝑆𝐶𝐼𝑆𝐶
𝐶𝐷𝐶

 (42) 

2.5. Interleaved boost DC/DC converter 

As depicted in Fig. 5, the interleaved boost 

DC/DC converter serves as the primary power 

unit for the vehicle’s input stage [26]. It functions 

in continuous conduction mode (CCM), enabling 

efficient regulation and amplification of the FC 

output voltage. The analysis is divided into two 

cases based on the switching states. 

Case 1: When switch 𝑆1 is activated (ON) and 

𝑆2 is deactivated (OFF), 𝑆1 provides a closed path 

while diode 𝐷1 becomes reverse-biased and 

remains non-conductive. Conversely, with 𝑆2 
open, diode 𝐷2 is forward-biased and conducts 

current. Consequently, inductor 𝐿𝐹𝐶1 is energized 

through the input voltage 𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 , while the stored 

energy in 𝐿𝐹𝐶2 is transferred to the output circuit 

via diode 𝐷2. The analytical expressions 

corresponding to this operation mode are detailed 

in (43)-(45). 

𝑅𝐹𝐶1 

𝐶DC  

𝐿FC1  

𝑑2
𝐹𝐶 

𝐼𝐹𝐶 

𝐼𝑜𝑢𝑡  

𝑅𝐹𝐶2 𝐿FC2 

𝑑1
𝐹𝐶 

𝑉𝑐𝑒𝑙𝑙
𝐹𝐶  

𝑅
𝑙𝑜
𝑎
𝑑

 

𝑉𝐷𝐶  

𝑆1 𝑆2 

𝐷1 𝐷2 

Figure 5: Overall structural configuration of the 

interleaved boost DC/DC converter 

𝑑𝑖𝐿𝐹𝐶1
𝑑𝑡
=
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶

𝐿𝐹𝐶1
 (43) 

𝑑𝑖𝐿𝐹𝐶2
𝑑𝑡
=
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − 𝑉𝐷𝐶
𝐿𝐹𝐶2

 (44) 

𝑑𝑉𝐷𝐶
𝑑𝑡
=
𝑖𝐿𝐹𝐶2
𝐶𝐷𝐶
−
𝑉𝐷𝐶
𝑅𝑙𝑜𝑎𝑑𝐶𝐷𝐶

 (45) 

Case 2: When switch 𝑆1 is turned off and 𝑆2 is 

activated, 𝑆1 remains in the open state, enabling 

diode 𝐷1 to conduct. In contrast, the closed state 

of 𝑆2 renders diode 𝐷2 reverse-biased and thus 

non-conductive. Under these conditions, inductor 

𝐿2 is charged by the FC voltage 𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 , while the 

stored energy in inductor 𝐿1 is delivered to the 

output through diode 𝐷1. The corresponding 

governing equation for this operating mode is 

reformulated as: 

 
𝑑𝑖𝐿𝐹𝐶1
𝑑𝑡
=
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − 𝑉𝐷𝐶
𝐿𝐹𝐶1

 (46) 

𝑑𝑖𝐿𝐹𝐶2
𝑑𝑡
=
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶

𝐿𝐹𝐶2
 (47) 

𝑑𝑉𝐷𝐶
𝑑𝑡
=
𝑖𝐿𝐹𝐶1
𝐶𝐷𝐶
−
𝑉𝐷𝐶
𝑅𝑙𝑜𝑎𝑑𝐶𝐷𝐶

 (48) 

Using state-space averaging, the unified converter 

dynamics are represented by (49) and (50), from 

which the output voltage is subsequently derived 

as expressed in (51). 

𝐿𝐹𝐶1
𝑑𝑖𝐿𝐹𝐶1
𝑑𝑡
= 𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑1

𝐹𝐶)𝑉𝐷𝐶 (49) 

𝐿𝐹𝐶2
𝑑𝑖𝐿𝐹𝐶2
𝑑𝑡
= 𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑2

𝐹𝐶)𝑉𝐷𝐶 (50) 

𝐶𝐷𝐶
𝑑𝑉𝐷𝐶
𝑑𝑡
= (1 − 𝑑1

𝐹𝐶)𝑖𝐿𝐹𝐶1 + (1

− 𝑑2
𝐹𝐶)𝑖𝐿𝐹𝐶2 −

𝑉𝐷𝐶
𝑅𝑙𝑜𝑎𝑑

 
(51) 

3. Hierarchical Nested Cascade Control 

Framework 

The proposed strategy for energy management 

of FCHEVs integrates a FC as the primary power 

source along with an ESS. Within the ESS, 

batteries offer high energy density but limited 

power output, whereas SCs deliver superior power 

density and longevity, though at the expense of 

energy capacity. This hybrid configuration is 

designed to improve FC operational stability and 

efficiency, while also optimizing the ESS by 
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leveraging the SC's rapid response to peak power 

demands and assigning smoother load profiles to 

the battery. Central to this framework is the 

implementation of a dynamic power distribution 

method combined with a resilient control 

mechanism, enabling effective handling of 

transient load conditions. 

The hierarchical nested cascade control 

framework illustrated in Fig. 6 is structured across 

three coordinated layers: an outer control level 

(OCL) governed by the adaptive API controller, 

and two inner layers, namely, the middle control 

level (MCL) and inner control level (ICL), each 

implemented using BS controllers. The primary 

objective of the API controller is to regulate the 

DC bus voltage, ensuring system-wide voltage 

stability under varying load conditions. In 

contrast, the BS controllers are responsible for 

precise current management of both the FC and 

the ESS, which includes the battery and SC. 

This multi-tiered configuration enables dynamic 

and decoupled control of power flow across the 

system. The control sequence begins by applying 

the backstepping technique to govern the current 

profiles of the FC and ESS components 

individually. By isolating control responsibilities 

across these nested levels, the framework 

enhances robustness against uncertainties and 

improves adaptability to transient operating states. 

Furthermore, this approach facilitates modular 

expansion and allows for the integration of 

advanced control policies without compromising 

overall system coherence. The synergy between 

voltage regulation and current control 

mechanisms enables stable and responsive power 

management, which is essential for real-world 

FCHEV applications where load variability and 

nonlinear dynamics are prevalent. 

BS nonlinear control is fundamentally a 

recursive design methodology wherein the control 

law is constructed incrementally. At each stage of 

the synthesis process, a specific system state is 

stabilized by treating the subsequent state as a 

virtual control input. This iterative approach 

results in the formulation of a stabilizing control 

function that systematically drives the system 

toward its desired equilibrium state, typically a 

stable closed-loop configuration. The recursive 

nature of BS facilitates a structured and modular 

control law derivation, making it particularly 

effective for systems exhibiting hierarchical 

dynamics or strong nonlinearities. Stability 

throughout the control design process is 

rigorously ensured by employing Lyapunov-based 

functions, which guide the selection of control 

parameters at each step and verify convergence 

toward the desired behavior [27]. 

In the context of regulating the DC bus voltage 

and achieving the control objectives of the 

proposed framework, the initial phase involves 

defining an appropriate tracking error for FC 

system. This error quantifies the deviation 

between the actual and target voltage trajectories 

and forms the basis for subsequent control 

synthesis. The first tracking error for FC, central 

to the backstepping procedure, is defined as 

follows: 

𝜀𝐹𝐶,1 = 𝐼𝐹𝐶 − 𝐼𝐹𝐶
𝑅𝑒𝑓

 (52) 

Differentiating (52) and substituting into (49) 

and (50) yields the following expression for the 

error dynamics: 

𝑑𝜀𝐹𝐶,1
𝑑𝑡
= (
𝑑𝑖𝐿𝐹𝐶1
𝑑𝑡
+
𝑑𝑖𝐿𝐹𝐶2
𝑑𝑡
) −
𝑑𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡

= (
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑1

𝐹𝐶)𝑉𝐷𝐶
𝐿𝐹𝐶1

+
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑2

𝐹𝐶)𝑉𝐷𝐶
𝐿𝐹𝐶2

)

−
𝑑𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡
 

(53) 

To assess system stability and convergence, a 

Lyapunov candidate function is introduced and 

defined as follows: 

𝜗𝐹𝐶,1 =
1

2
(𝜀𝐹𝐶,1)

2
 (54) 

Based on Lyapunov’s stability theorem, the 

system exhibits asymptotic stability if derivative 

of the  𝜗𝐹𝐶,1  remains negative. Accordingly, 
𝜗𝐹𝐶,1

𝑑𝑡
 

can be reformulated as follows: 

𝜗𝐹𝐶,1
𝑑𝑡
= 𝜀𝐹𝐶,1 ×

𝑑𝜀𝐹𝐶,1
𝑑𝑡

= 𝜀𝐹𝐶,1((
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑1

𝐹𝐶)𝑉𝐷𝐶
𝐿𝐹𝐶1

+
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑2

𝐹𝐶)𝑉𝐷𝐶
𝐿𝐹𝐶2

) −
𝑑𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡
) 

(55) 

Reformulate the (55) to reflect virtual control, 

so, the expression is modified as follows: 
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𝜗𝐹𝐶,1
𝑑𝑡
= 𝜀𝐹𝐶,1 (

𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 (𝐿𝐹𝐶1+𝐿𝐹𝐶2)

𝐿𝐹𝐶1𝐿𝐹𝐶2

−
𝑉𝐷𝐶
𝐿𝐹𝐶1𝐿𝐹𝐶2

(𝐿𝐹𝐶2(1 − 𝑑1
𝐹𝐶)

+ 𝐿𝐹𝐶1(1 − 𝑑2
𝐹𝐶)) −

𝑑𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡
) 

(56) 

Selecting 
𝑉𝐷𝐶

𝐿𝐹𝐶1𝐿𝐹𝐶2
 function as a virtual control 

parameter (𝛾) to ensure that 
𝜗𝐹𝐶,1

𝑑𝑡
 remains 

negative. Consequently, we derive the following: 

𝑉𝐷𝐶
𝐿𝐹𝐶1𝐿𝐹𝐶2

=  𝛾

=
𝑃1𝜀𝐹𝐶,1 +

𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 (𝐿𝐹𝐶1+𝐿𝐹𝐶2)
𝐿𝐹𝐶1𝐿𝐹𝐶2

−
𝑑𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡

𝐿𝐹𝐶2(1 − 𝑑1
𝐹𝐶) + 𝐿𝐹𝐶1(1 − 𝑑2

𝐹𝐶)
 

(57) 

where 𝑃1 denotes a design parameter that governs 

the structural configuration of the model. 

The subsequent step involves introducing the 

second error term, defined as follows: 

𝜀𝐹𝐶,2 =
𝑉𝐷𝐶
𝐿𝐹𝐶1𝐿𝐹𝐶2

− 𝛾 (58) 

Subsequently, as presented in (59), the term 
𝑑𝜀𝐹𝐶,2

𝑑𝑡
 is computed by applying (58) and (51). 

𝑑𝜀𝐹𝐶,2
𝑑𝑡
 =
(1 − 𝑑1

𝐹𝐶)𝑖𝐿𝐹𝐶1 + (1 − 𝑑2
𝐹𝐶)𝑖𝐿𝐹𝐶2

𝐶𝐷𝐶𝐿𝐹𝐶1𝐿𝐹𝐶2

−
𝑉𝐷𝐶

𝑅𝑙𝑜𝑎𝑑𝐶𝐷𝐶𝐿𝐹𝐶1𝐿𝐹𝐶2
−
𝑑𝛾

𝑑𝑡
 

(59) 

Based on (49), (50), (53), and (57), the time 

derivative of 𝛾 is formulated and presented in 

(60). Consequently, the value of 
𝑑𝛾

𝑑𝑡
 is substituted 

into (59) to evaluate the derivative of the second 

component of the error term. Subsequently, a 

composite Lyapunov function is constructed in 

(61). 

𝜗𝐹𝐶,2 = 𝜗𝐹𝐶,1 +
1

2
(𝜀𝐹𝐶,2)

2
 (61) 

Differentiating the function presented in (61) 

yields the following expression: 

𝑑𝜗𝐹𝐶,2
𝑑𝑡
=
𝑑𝜗𝐹𝐶,1
𝑑𝑡
+ (
𝑑𝜀𝐹𝐶,2
𝑑𝑡
× 𝜀𝐹𝐶,2) (62) 

Taking into account the relationship defined in 

(55), the following result is obtained: 

𝑑𝜗𝐹𝐶,2
𝑑𝑡
= (𝜀𝐹𝐶,1 ×

𝑑𝜀𝐹𝐶,1
𝑑𝑡
)

+ (𝜀𝐹𝐶,2 ×
𝑑𝜀𝐹𝐶,2
𝑑𝑡
) 

(63) 

C(VDC) C(IFC)

C(ISC)

C(IBat)

T(ISC)

T(IBat)

T(IFC) T(VDC)
-+

𝐼𝐹𝐶
𝑅𝑒𝑓

 𝑉𝐷𝐶
𝑟𝑒𝑓

 
      

𝐼𝐸𝑆𝑆
𝑅𝑒𝑓

 +

+

𝑉𝐷𝐶  

--

  

𝑉𝐷𝐶  

𝐼𝐵𝑎𝑡 + 𝐼𝑆𝐶  

 

+
+

𝐼𝐹𝐶  

OCL

ICL
MCL

API
BS

BS

BS

 

Figure 6: Proposed hierarchical nested cascade control framework 

𝑑𝛾

𝑑𝑡
=

𝑃1 ((
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑1

𝐹𝐶)𝑉𝐷𝐶
𝐿𝐹𝐶1

+
𝑉𝑐𝑒𝑙𝑙
𝐹𝐶 − (1 − 𝑑2

𝐹𝐶)𝑉𝐷𝐶
𝐿𝐹𝐶2

) −
𝑑𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡
)

𝐿𝐹𝐶2(1 − 𝑑1
𝐹𝐶) + 𝐿𝐹𝐶1(1 − 𝑑2

𝐹𝐶)

+

(𝐿𝐹𝐶1+𝐿𝐹𝐶2)
𝐿𝐹𝐶1𝐿𝐹𝐶2

(
(1 − 𝑑1

𝐹𝐶)𝑖𝐿𝐹𝐶1 + (1 − 𝑑2
𝐹𝐶)𝑖𝐿𝐹𝐶2 −

𝑉𝐷𝐶
𝑅𝑙𝑜𝑎𝑑

𝐶𝐷𝐶
)−
𝑑2𝐼𝐹𝐶
𝑅𝑒𝑓

𝑑𝑡2

𝐿𝐹𝐶2(1 − 𝑑1
𝐹𝐶) + 𝐿𝐹𝐶1(1 − 𝑑2

𝐹𝐶)
 

(60) 
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By strategically adding and subtracting a 

specific term to regulate the second component, 

(64) can be reformulated as follows: 

𝑑𝜗𝐹𝐶,2
𝑑𝑡
= (𝜀𝐹𝐶,1 ×

𝑑𝜀𝐹𝐶,1
𝑑𝑡
)

+ (𝜀𝐹𝐶,2 ×
𝑑𝜀𝐹𝐶,2
𝑑𝑡
)

+ 𝑃2𝜀𝐹𝐶,2
2 − 𝑃2𝜀𝐹𝐶,2

2 

(64) 

where 𝑃2 > 0 denotes a design parameter for 

second term that governs the structural 

configuration of the model. 

To guarantee the negativity of 
𝑑𝜗𝐹𝐶,2

𝑑𝑡
, (65) must 

be satisfied. Also, the control inputs 𝑑1
𝐹𝐶 and 𝑑2

𝐹𝐶 

should be redefined as new control variables to 

ensure the desired dynamic behavior to meet the 

stability criteria under varying operating 

conditions. 

𝜀𝐹𝐶,1 ×
𝑑𝜀𝐹𝐶,1
𝑑𝑡
+ 𝜀𝐹𝐶,2 ×

𝑑𝜀𝐹𝐶,2
𝑑𝑡

+ 𝑃2𝜀𝐹𝐶,2
2 < 0 

(65) 

Once the FC output has been regulated to 

stabilize the DC voltage, attention shifts to 

managing the output current of the ESS. Based on 

the output of the MCL, the reference current for 

the ESS is determined to control the output of 

ESS. However, achieving this objective 

necessitates a nonlinear model that characterizes 

the relationship between the input currents of each 

ESS, namely 𝐼𝐵𝑎𝑡 and 𝐼𝑆𝐶, and the associated 

control variables 𝛿𝐵𝑎𝑡 and 𝛿𝑆𝐶 . To initiate the 

control process, the tracking errors are first 

defined as follows: 

𝜀𝐵𝑎𝑡,3 = 𝐼𝐵𝑎𝑡 − 𝐼𝐵𝑎𝑡
𝑅𝑒𝑓

 (66) 

𝜀𝑆𝐶,4 = 𝐼𝑆𝐶 − 𝐼𝑆𝐶
𝑅𝑒𝑓

 (67) 

By differentiating the error expressions in (66) 

and (67), and incorporating the system dynamics 

from (35) and (38), the resulting dynamic error 

formulations are derived as follows: 

𝑑𝜀𝐵𝑎𝑡,3
𝑑𝑡
=
𝑉𝑇
𝐵𝑎𝑡

𝐿𝑤1
−
𝑅𝑤1
𝐿𝑤1
𝐼𝐵𝑎𝑡 − δ𝐵𝑎𝑡

𝑉𝐷𝐶
𝐿𝑤1

−
𝑑𝐼𝐵𝑎𝑡
𝑅𝑒𝑓

𝑑𝑡
 

(68) 

𝑑𝜀𝑆𝐶,4
𝑑𝑡
=
𝑉𝑇
𝑆𝐶

𝐿𝑤2
−
𝑅𝑤2
𝐿𝑤2
𝐼𝑆𝐶 − δ𝑆𝐶

𝑉𝐷𝐶
𝐿𝑤2
−
𝑑𝐼𝑆𝐶
𝑅𝑒𝑓

𝑑𝑡
 (69) 

In accordance with the control requirements 

provided for FC unit, Lyapunov candidate 

functions are formulated for both the battery and 

SC units to assess system stability and 

convergence. These functions are defined as 

follows: 

𝜗𝐵𝑎𝑡,3 =
1

2
(𝜀𝐵𝑎𝑡,3)

2
 (70) 

𝜗𝑆𝐶,4 =
1

2
(𝜀𝑆𝐶,4)

2
 (71) 

Based on Lyapunov’s stability criterion, a 

system achieves asymptotic stability when the 

derivatives of the Lyapunov candidate functions, 

𝜗𝐵𝑎𝑡,3 and 𝜗𝑆𝐶,4, are strictly negative. To satisfy 

this requirement, these derivatives are deliberately 

set to −𝑃3𝜀𝐵𝑎𝑡,3
2 and −𝑃4𝜀𝑆𝐶,4

2, respectively, 

where 𝑃3 and 𝑃4 denote positive design 

parameters, and 𝜀𝐵𝑎𝑡,3, 𝜀𝑆𝐶,4 correspond to the 

associated error signals. By performing 

differentiation on (70) and (71), the following 

expressions are derived: 

𝑑𝜗𝐵𝑎𝑡,3
𝑑𝑡
= 𝜀𝐵𝑎𝑡,3 ×

𝑑𝜀𝐵𝑎𝑡,3
𝑑𝑡
= −𝑃3𝜀𝐵𝑎𝑡,3

2 (72) 

𝑑𝜗𝑆𝐶,4
𝑑𝑡
= 𝜀𝑆𝐶,4 ×

𝑑𝜀𝑆𝐶,4
𝑑𝑡
= −𝑃4𝜀𝑆𝐶,4

2 (73) 

Substituting the expressions from (68) and (69) 

into (72) and (73) yields the following 

relationships: 

δ𝐵𝑎𝑡 =
𝐿𝑤1
𝑉𝐷𝐶
(
𝑉𝑇
𝐵𝑎𝑡

𝐿𝑤1
−
𝑅𝑤1
𝐿𝑤1
𝐼𝐵𝑎𝑡 −

𝑑𝐼𝐵𝑎𝑡
𝑅𝑒𝑓

𝑑𝑡

+ 𝑃3𝜀𝐵𝑎𝑡,3) 
(74) 

δ𝑆𝐶 =
𝐿𝑤2
𝑉𝐷𝐶
(
𝑉𝑇
𝑆𝐶

𝐿𝑤2
−
𝑅𝑤2
𝐿𝑤2
𝐼𝑆𝐶 −
𝑑𝐼𝑆𝐶
𝑅𝑒𝑓

𝑑𝑡

+ 𝑃4𝜀𝑆𝐶,4) 
(75) 

Regarding the global asymptotic stability of the 

overall system, it can be inferred from (55), (72), 

and (73) that the corresponding expressions are 

strictly negative, provided that 𝑃1, 𝑃2, 𝑃3, and 𝑃4 
are positive. Consequently, by applying Lyapunov 

stability theory, the closed-loop control strategy 

for the FCHEV power system ensures global 

asymptotic stability, as rigorously demonstrated 

and validated in (76). 
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𝜗𝑆𝑦𝑠

𝑑𝑡
=
𝑑𝜗𝐹𝐶,1
𝑑𝑡
+
𝑑𝜗𝐹𝐶,2
𝑑𝑡
+
𝑑𝜗𝐵𝑎𝑡,3
𝑑𝑡
+
𝑑𝜗𝑆𝐶,4
𝑑𝑡

= −𝑃1𝜀𝐹𝐶,1
2

− 𝑃2𝜀𝐹𝐶,2
2−𝑃3𝜀𝐵𝑎𝑡,3

2

− 𝑃4𝜀𝑆𝐶,4
2 

(76) 

In FCHEV systems, ensuring the stability of the 

DC bus voltage is essential for reliable operation. 

Hence, the subsequent step involves designing the 

OCL to regulate the DC bus voltage, even in the 

presence of dynamic load variations. Although PI 

controllers are widely employed for this purpose, 

their effectiveness may deteriorate in the presence 

of load fluctuations, parameter uncertainties, or 

external disturbances. To enhance robustness, 

MRAC mechanism can be implemented to 

continuously tune the PI gains 𝐾𝑝 and 𝐾𝑖, thereby 

maintaining consistent voltage regulation under 

varying operating conditions. The primary control 

objective of the OCL is presented in (77). 

𝜀𝑉 = 𝑉𝐷𝐶 − 𝑉𝐷𝐶
𝑟𝑒𝑓

 (77) 

Taking the derivative of equation (77) results in: 

𝑑𝜀𝑉
𝑑𝑡
=
𝑑𝑉𝐷𝐶
𝑑𝑡
−
𝑑𝑉𝐷𝐶
𝑟𝑒𝑓

𝑑𝑡
 (78) 

Taking into account the DC bus capacitor and 

total input currents, the expression may be 

reformulated as: 

𝑑𝜀𝑉
𝑑𝑡
=
𝐼𝐹𝐶 + 𝐼𝐵𝑎𝑡 + 𝐼𝑆𝐶 − 𝐼𝐿𝑜𝑎𝑑

𝑑𝑡
−
𝑑𝑉𝐷𝐶
𝑟𝑒𝑓

𝑑𝑡
 (79) 

The API controller generates the input current 

reference as follows: 

𝐼𝐹𝐶 + 𝐼𝐵𝑎𝑡 + 𝐼𝑆𝐶 = 𝐾𝑝𝜀𝑉 + 𝐾𝑖 ∫ 𝜀𝑉𝑑𝑡  (80) 

The Lyapunov function is constructed to ensure 

the regulation of the DC bus voltage, as follows: 

𝜗𝐷𝐶 =
1

2
𝜀𝑉
2 +
1

2𝜇𝑝
𝐾̃𝑝
2 +
1

2𝜇𝑖
𝐾̃𝑖
2 (81) 

where, 𝐾̃𝑝 = 𝐾𝑝 − 𝐾𝑝
∗  represents error in 𝐾𝑝, 

𝐾̃𝑖 = 𝐾𝑖 − 𝐾𝑖
∗ represents error in 𝐾𝑖, and 𝜇𝑝, 𝜇𝑖  are 

adaptation gains. 

Differentiate 𝜗𝐷𝐶 and enforce 
𝑑𝜗𝐷𝐶

𝑑𝑡
≤ 0 to 

derive adaptation laws: 

𝑑𝜗𝐷𝐶
𝑑𝑡
= 𝜀𝑉 ×

𝑑𝜀𝑉
𝑑𝑡
+
1

𝜇𝑝
𝐾̃𝑝
𝑑𝐾̃𝑝
𝑑𝑡
+
1

𝜇𝑖
𝐾̃𝑖
𝑑𝐾̃𝑖
𝑑𝑡

 (82) 

𝑑𝐾̃𝑝
𝑑𝑡
= 𝜇𝑝𝜀𝑉

2 (83) 

𝑑𝐾̃𝑖
𝑑𝑡
= 𝜇𝑖𝜀𝑉∫ 𝜀𝑉  𝑑𝑡 (84) 

Consequently, by incorporating relations (79), 

(80), (83), and (84), relation (82) can be 

reformulated as: 

𝑑𝜗𝐷𝐶
𝑑𝑡
= 𝜀𝑉 × (

𝐾𝑝𝜀𝑉 + 𝐾𝑖 ∫ 𝜀𝑉𝑑𝑡 − 𝐼𝐿𝑜𝑎𝑑

𝑑𝑡

−
𝑑𝑉𝐷𝐶
𝑟𝑒𝑓

𝑑𝑡
) + 𝐾̃𝑝𝜀𝑉

2

+ 𝐾̃𝑖𝜀𝑉∫ 𝜀𝑉  𝑑𝑡 

(85) 

To make adaptation sensitive to error 

magnitude, normalize gains are as follows: 

𝜇𝑝 =
𝜎𝑝

max expected 𝜀𝑉
2
 (86) 

𝜇𝑖 =
𝜎𝑖

max expected |𝜀𝑉 ⋅ ∫ 𝜀𝑉  𝑑𝑡|
 (87) 

where 𝜎𝑝, 𝜎𝑖 denote dimensionless scaling 

coefficients, assigned values of 0.35 and 0.6, 

respectively. 

4. Simulation and Analysis 
To assess the effectiveness of the proposed 

EMS based on the hierarchical nested cascade 

control framework, a series of simulations were 

conducted using the MATLAB/Simulink 

environment. The system parameters employed in 

the simulation are summarized in Table 1. 

Additional general parameters are provided in the 

last section (see list of symbols). The hybrid 

powertrain under consideration is configured for a 

FCHEV, integrating three complementary energy 

sources: Battery, UC, and FC. 

The load profile is intentionally crafted to 

incorporate abrupt fluctuations in power demand, 

effectively simulating realistic driving conditions 

using the standardized WLTC-Class 3 driving 

cycle, as illustrated by the diverse speed profile 

shown in Fig. 7. This cycle, characterized by 

distinct acceleration, deceleration, and idling 
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phases, imposes diverse transient load patterns on 

the hybrid energy system and highlights the low, 

medium, high, and extra-high speed phases used 

to simulate real-world driving conditions. 

Throughout the simulation, the DC bus reference 

voltage is maintained at a constant 380V to ensure 

consistent baseline conditions for performance 

evaluation. The primary objective of this analysis 

is to investigate the transient response of the 

FCHEV system under dynamic load scenarios. 

Particular attention is given to the voltage and 

current stability during rapid load transitions. The 

proposed EMS demonstrates robust control 

performance, effectively coordinating power 

distribution among the three energy sources and 

minimizing voltage deviations and current 

overshoots. The findings presented in this section 

highlight the robustness and efficacy of the 

proposed control framework in significantly 

improving system resilience, promoting dynamic 

adaptability to varying operational conditions, and 

optimizing energy utilization within FCHEV 

architectures. By seamlessly integrating adaptive 

control strategies with real-time system feedback, 

the framework demonstrates its potential to 

address the multifaceted challenges of modern 

FCHEVs, thereby contributing to enhanced 

performance, sustainability, and reliability in 

next-generation transportation technologies. 

Table 1: System parameters of the hybrid EMS 

under study 

Symbol Value 

𝑅0 (𝑐ℎ, 𝑑𝑐ℎ) (0.85𝑚𝛺, 0.7𝑚𝛺) 

𝑅1 35 𝑚𝛺 

𝑅2 380 𝑚𝛺 

𝐶1 90 𝐹 

𝐶2 450 𝐹 

𝑄𝐵𝑎𝑡
𝑛𝑜𝑚 40 𝑘𝑊ℎ 

𝑉𝑂𝐶
𝐵𝑎𝑡(𝑆𝑂𝐶 = 100) 260 𝑉 

𝑅𝑆𝐶𝑆 0.5 𝑚𝛺 

𝑅𝑆𝐶𝐿 30 𝛺 

𝑅𝑆𝐶1 8.5 𝑚𝛺 

𝑅𝑆𝐶2 65 𝑚𝛺 

𝐶𝑆𝐶1 60 𝐹 

𝐶𝑆𝐶2 2400 𝐹 

𝑅𝑤1, 𝑅𝑤2 0.5 𝑚𝛺 

𝐿𝑤1, 𝐿𝑤2 5 𝑚𝐻 

𝑅𝐹𝐶1,𝑅𝐹𝐶2 1 𝑚𝛺 

𝐿𝐹𝐶1,𝐿𝐹𝐶2 1.6 𝑚𝐻 

𝑅𝑜ℎ𝑚
𝐹𝐶  20 𝑚𝛺 

𝑇 334 𝐾 

𝑃1, 𝑃2, 𝑃3, 𝑃4  2800,2500,1500,2000 

𝐶𝐷𝐶 30 𝑚𝐹 

𝑉𝐷𝐶
𝑟𝑒𝑓

 380 𝑉 

𝑃𝑎𝑛𝑜𝑑𝑒 2 𝑎𝑡𝑚 

𝑃𝑐𝑎𝑡ℎ𝑜𝑑𝑒 1.5 𝑎𝑡𝑚 

𝑅𝐻 50 % 

 

Figure 7: Speed–time profile of the standardized 

WLTC-Class 3 driving cycle, illustrating the 

distinct phases used to simulate realistic driving 

conditions. 

In the present investigation the total 

instantaneous electric power demand of an 

FCHEV is determined by the product of the total 

tractive force 𝐹total acting on the vehicle and its 

velocity 𝑣, and also overall drivetrain efficiency 

𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛 (0.85) . 

𝑃FCHEV =
𝐹total

𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛
⋅ 𝑣 (88) 

The total tractive force comprises several 

components, including gravitational force due to 

road slope, inertial force, rolling resistance, 

aerodynamic drag, and regenerative braking 

effects. These forces can be expressed as: 

𝐹total = 𝐹slope + 𝐹inertial + 𝐹friction + 𝐹drag

+ 𝐹regen (89) 

Combining these components, the total electric 

power demand is considered as follows: 

𝑃EV = 𝑣. (
𝑚𝑔𝑠𝑖𝑛(𝜃) + 𝑚𝑎 +𝑚𝑔𝐶𝑟𝑐𝑜𝑠(𝜃)

𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛

+

1
2𝜌𝐶𝑑𝐴𝑣

2 − 𝜂regen𝑚𝑎

𝜂𝑑𝑟𝑖𝑣𝑒𝑡𝑟𝑎𝑖𝑛
) 

(90) 

Here, 𝑎 denotes the vehicle’s linear acceleration 

(positive during acceleration, negative during 

deceleration). The rolling resistance coefficient 𝐶𝑟 
depends on tire characteristics and road surface 

conditions, in this study 𝐶𝑟 = 0.01. Also, 𝑚 =

1500 𝑘𝑔, 𝑔 = 9.81 𝑚/𝑠², 𝜌 = 1.225 𝑘𝑔/𝑚³, 
𝐶𝑑 = 0.3, 𝐴 = 2.5 𝑚². Moreover, during 

deceleration (𝑎 < 0), regenerative braking 

recovers a fraction of kinetic energy. In doing so,  
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Figure 8: Total instantaneous electric power 

demand of the FCHEV under the WLTC-Class 3 

driving cycle. 

𝜂regen represents the regenerative braking 

efficiency, which is typically set to 0.75.  

Based on the prescribed drive cycle and the 

formulation of vehicle longitudinal dynamics, the 

total instantaneous electric power demand is 

determined as presented in Fig. 8. 

 

To assess the performance and advantages of 

the proposed energy management strategy for 

hybrid electric vehicles, the results are 

systematically compared with two established 

benchmark approaches, as outlined below: 

■ Case 1: Application of the proposed  

hierarchical nested cascade control framework. 

■  Case 2: Deployment of a data-driven 

reinforcement-learning-based on the type-1 fuzzy 

logic controller, as described in [13]. 

■  Case 3: Utilization of a real-time control 

strategy, as presented in [10]. 

In this study, the current profiles and power 

distribution among the three energy sources, 

battery, SC, and FC, within an FCHEV were 

analyzed under three distinct EMSs, referred to as 

Case 1, Case 2, and Case 3. Case 1 consistently 

demonstrated superior performance across 

multiple metrics. Specifically, as shown in Fig. 9, 

it exhibited the lowest current ripple, which is 

critical for enhancing the longevity and efficiency 

of power electronic components. Additionally, 

Case 1 minimized the instantaneous power 

demand from both the battery and the SC, thereby 

reducing thermal stress and improving overall 

energy efficiency. Notably, this strategy also 

facilitated a more effective and sustained 

utilization of the FC’s capacity, ensuring that its 

output was leveraged optimally without inducing 

excessive transients. In contrast, Case 2 showed 

less favorable results, with higher current ripple 

and greater reliance on the battery and SC, leading 

to increased strain on these components. Case 3 

performed marginally better than Case 2 but still 

fell short of the performance achieved by Case 1. 

These findings underscore the robustness of Case 

1 as the most balanced and efficient strategy, 

offering improved dynamic response and better 

resource allocation among the available energy 

sources. 

 

 

Figure 9: Total current of each power sources based 

on electric power demand of the FCHEV; (a) FC, 

(b) Battery, and (c) SC 

The power allocation strategy in Case 1 is 

designed to distribute the load demand more 

evenly across the available energy sources, 

thereby significantly reducing the instantaneous 

power spikes typically imposed on the battery and 

SC. As illustrated in Fig. 10, by smoothing the 

power flow and avoiding abrupt transients, Case 1 

effectively mitigates electrical and thermal stress 

on these components, which is crucial for 

prolonging their operational lifespan and 

maintaining system reliability. Moreover, this 

strategy allows the FC to operate closer to its 

optimal efficiency range, with fewer idle periods 

and more consistent power output, leading to 

enhanced FC utilization (see Fig. 11). In contrast, 

Case 2 exhibits a less coordinated power 

distribution, resulting in frequent high-power 

demands from the battery and SC, which not only 

accelerates degradation but also limits the FC’s 

contribution to the overall energy supply. Case 3 

performs marginally better than Case 2 in terms of 

FC engagement, yet still suffers from inefficient 

load sharing and elevated stress levels on the 

auxiliary sources. These comparative results  
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highlight the effectiveness of Case 1 in 

achieving a balanced and efficient energy 

management scheme that prioritizes component 

longevity and system-level optimization. 

By zooming into the selected region of the 

image, the finer details of the power flow 

dynamics and component interactions are more 

clearly visualized. This magnified section 

provides enhanced clarity regarding the transient 

behavior of current distribution, allowing for a 

more precise interpretation of how the proposed 

strategy in Case 1 effectively mitigates stress on 

the battery and SC while optimizing FC 

utilization. 

The initial SOC of the battery was set to 85% 

for all three cases to ensure a consistent starting 

point for comparison. As shown in Fig. 12(a), at 

the end of the drive cycle, Case 1, representing the 

proposed energy management strategy, resulted in 

a final SOC of 74.2%, indicating a more 

controlled and efficient battery usage. In contrast, 

Case 2 and Case 3 showed significantly lower 

final SOC values of 71% and 72.5%, respectively, 

reflecting higher energy depletion and less 

effective load balancing. These results confirm 

that Case 1 not only reduces the depth of 

discharge but also contributes to improved battery 

sustainability and long-term performance within 

the FCHEV system. 

As presented in Fig. 12(b), the proposed energy 

management strategy in Case 1 significantly 

reduces voltage ripple throughout the drive cycle, 

primarily due to its adaptive ripple mitigation 

approach. This method continuously considers the 

 

Figure 10:  Total power of each battery and SC sources based on electric power demand of the FCHEV 

 

Figure 11:  Total power of FC based on electric power demand of the FCHEV 
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injected power from auxiliary sources and 

actively utilizes voltage feedback, resulting in a 

smoother and more stable voltage profile. In 

contrast, Case 2 exhibits pronounced fluctuations 

in voltage ripple, with sharp increases and 

decreases indicating poor regulation. Although 

Case 3 performs better than Case 2, it still 

presents considerable ripple levels that can 

adversely affect system reliability. Excessive 

voltage ripple in FCHEVs contributes to 

component degradation, reduced battery lifespan, 

and ultimately leads to suboptimal vehicle 

performance. The results clearly demonstrate that 

Case 1 offers superior voltage stability, enhancing 

both energy efficiency and long-term durability of 

the powertrain system. 

 

Figure 12: (a) The SOC of battery units, and (b) 

Terminal DC voltage based on electric power 

demand of the FCHEV 

The simulation results demonstrate that the 

proposed EMS architecture for FCHEVs (Case 1) 

significantly enhances voltage and current 

stability across all tested scenarios. Compared to 

conventional hybrid EMS configurations (Cases 2 

and 3) incorporating three power sources, namely, 

battery, UC, and FC, the proposed system exhibits 

superior dynamic response and robustness. This 

improvement is attributed to the optimized power 

distribution strategy and adaptive control 

mechanisms embedded within the EMS, which 

effectively mitigate voltage fluctuations and 

suppress current overshoots during abrupt load 

transitions. Overall, the findings underscore the 

potential of the proposed EMS to deliver more 

reliable and efficient energy management in 

hybrid electric vehicles and other multi-source 

power systems, particularly under highly variable 

operating conditions. 

4.1. Sensitivity analysis: robustness against 

battery aging 

In this section, a sensitivity analysis was 

performed to assess the robustness of the 

proposed hierarchical control framework against 

battery parameter drifts, which serve as key 

indicators of aging. Following the methodology 

outlined in [28], battery degradation was emulated 

by deliberately modifying critical parameters 

within the equivalent circuit model (ECM) during 

simulation. Specifically, the internal resistance 

(𝑅0) was increased by 20%, and the nominal 

capacity (𝑄Bat
nom) was reduced by 15% to reflect a 

moderate state of health degradation. 

The results of this analysis confirm the inherent 

resilience of the nested cascade control structure. 

Despite the imposed parameter degradation, the 

system consistently maintained DC bus voltage 

stability, with the API controller at the outer 

control level successfully regulating the voltage 

within a tolerable deviation of ±3.5 V from the 

380 V reference under the WLTC-Class 3 cycle. 

This represents only a 1.5 V increase in the 

maximum deviation compared to the nominal case 

presented in Section 4. However, the analysis also 

revealed expected trade-offs. The voltage ripple 

exhibited a marginal increase of approximately 

18%, and the final battery SOC was 0.8% lower at 

the end of the drive cycle compared to the 

nominal scenario. This indicates that while the 

system remains stable, the efficiency of power 

distribution is slightly impacted as the controller 

works harder to compensate for the altered plant 

dynamics. 

As illustrated in Fig. 13(a) and (b), the 

presented sensitivity analysis unequivocally 

demonstrates that the proposed hierarchical nested 

cascade control framework (Case 1) possesses 

inherent structural robustness that makes it 

significantly more resilient to battery degradation 

compared to the other benchmark strategies. 

The following provides a detailed account of the 

proposed control framework’s superior 

performance under degraded battery conditions: 

■ Case 1 (Proposed): Exhibits the smallest 

performance drop across all key metrics. With 

a resilience index of 96.5%, it retains the vast 

majority of its nominal performance even when 

the battery's internal resistance increases by 20% 

and its capacity degrades by 15%. The 
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performance loss is marginal, typically between 3-

5%. 

■ Case 2: Suffers a severe performance decline, 

with a resilience index of only 84.2%. Its 

performance degrades by 8-12% across the board, 

indicating a fundamental lack of adaptability to 

the altered system dynamics caused by aging. 

■ Case 3: Performs better than Case 2 but worse 

than Case 1, with a resilience index of 89.7% and 

performance losses in the 6-9% range. 

 

Figure 13: (a) Performance radar chart under 

battery aging; (b) Relative performance loss due to 

battery aging 

Even when operating with a degraded battery, 

the absolute performance of Case 1 remains 

higher than the nominal (new battery) 

performance of the other two methods. For 

instance, the degraded voltage stability of Case 1 

(91.2%) is still superior to the nominal voltage 

stability of Case 2 (82.3%). This means that our 

proposed controller, even when handicapped by 

an aged battery, outperforms a brand-new system 

using the Case 2 strategy. 

The time-domain plot of DC bus voltage clearly 

shows that Case 1 maintains the tightest voltage 

regulation with the smallest ripple magnitude 

under degraded conditions. The adaptive PI (API) 

controller in the outer loop, combined with the 

robust backstepping current controllers, 

dynamically compensates for the increased 

internal resistance, preventing the large voltage 

swings seen in Cases 2 and 3. This directly 

translates to reduced stress on all vehicle electrical 

components and a longer system lifespan. 

The proposed strategy demonstrates intelligent 

power allocation, resulting in only a 0.8% greater 

SOC depletion at the end of the drive cycle 

compared to the nominal case. In contrast, Cases 

2 and 3 show significantly higher SOC depletion 

(approximately 2-3% more), indicating less 

efficient use of the degraded battery's limited 

energy and a tendency to over-stress it. 

This sensitivity analysis underscores a valuable 

direction for future work. To preemptively 

mitigate these effects and maintain optimal 

performance throughout the vehicle's lifespan, the 

proposed MRAC-based API controller can be 

seamlessly integrated with a real-time parameter 

identification tool, such as the hybrid adaptive 

battery parameter estimation (HABPE) method 

[28]. The HABPE approach, with its ability to 

accurately estimate ECM parameters like 𝑅0 and 

𝑄𝐵𝑎𝑡
𝑛𝑜𝑚 from operational voltage and current data 

(achieving 82-87% accuracy as reported), would 

provide real-time updates to the adaptive 

controller's reference model. This hybrid strategy 

would enable the control system to not only react 

to instantaneous errors but also proactively adapt 

its tuning laws to the slowly evolving parameters 

of an aging battery, thereby ensuring sustained 

optimal performance, efficiency, and component 

longevity. 

4.2. Validation under real-world urban driving 

conditions 

To initiate the simulation analysis, this section 

adopts the date-specific driving cycles formulated 

for Shiraz city, as proposed in [29]. In particular, 

the Shiraz working-day driving cycle was selected 

for validation due to its distinctive features 

compared to holidays, namely, a higher 

proportion of idling time (8.32% compared to 

2.65%), reduced average trip speed (23.29 km/h 

versus 39.64 km/h), and frequent acceleration and 

deceleration events. These attributes typify 

congested urban traffic scenarios and thus serve as 

a rigorous benchmark for evaluating the resilience 

of energy management systems under conditions 

of rapid power fluctuation and elevated peak 

demand. 

To better illustrate the current ripple behavior 

under congested urban traffic conditions, the 

battery and SC current profiles during the initial 

300 seconds, corresponding to the most intense 

stop-and-go phases, were extracted and depicted 
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in Figures 14(a) and (b).  The battery current 

profile under Case 1 exhibits exceptional 

smoothness with a minimal ripple of 13.3A, 

dramatically outperforming Case 2 (18.1A) and 

Case 3 (15.7A). More significantly, Case 1 

implements an intelligent bidirectional current 

management strategy that strategically utilizes 

regenerative braking phases and low-power 

demand intervals for controlled battery charging, 

while optimizing discharge patterns during 

acceleration and high-load conditions. The SC 

performance further underscores the framework's 

excellence, with Case 1 achieving an 

unprecedented current ripple of only -21.6A 

compared to -24.2A in Case 2 and -25.37A in 

Case 3. This sophisticated control architecture 

effectively leverages the SC's innate rapid 

response characteristics to handle high-frequency 

power transients, thereby shielding both the 

battery and FC from damaging current spikes. The 

harmonious current distribution not only reduces 

thermal stress compared to conventional 

approaches but also enhances overall system 

efficiency, validating the framework's practical 

superiority in real-world driving scenarios with 

highly dynamic load profiles. 

The battery SOC analysis during the initial 300 

seconds, provides compelling evidence of the 

proposed energy management strategy's 

exceptional capability in optimizing energy 

sustainability and extending battery lifecycle. 

Throughout the comprehensive drive cycle 

evaluation, Case 1 demonstrates superior SOC 

management, concluding with a final SOC of 

82.8% compared to 81.6% for Case 2 and 82.01% 

for Case 3. This 1.2 percentage point 

improvement over the fuzzy logic approach 

translates to approximately 1.28 kWh of 

additional usable energy retention, significantly 

extending the vehicle's operational range while 

reducing depth of discharge cycles that accelerate 

battery degradation mechanisms. 

The economic model developed in this study 

establishes a comprehensive correlation between 

seven pivotal performance parameters and the 

overall lifecycle cost of FCHEVs. Specifically, 

voltage ripple undermines the reliability of power 

electronic converters, while current ripple 

contributes to accelerated degradation of passive 

and active components. Efficiency losses translate 

directly into elevated operational energy 

expenditures, and SOC management plays a 

decisive role in preserving battery health and 

extending usable life. Moreover, cycling 

frequency governs the timing and frequency of 

component replacements, thermal stress 

 
Figure 14: System performance evaluation under 

representative urban driving conditions (initial 300 

seconds): (a) Battery current profile; (b) SC current 

profile; (c) Battery SOC trajectory. 

 

Figure 15: (a) Normalized cost component 

breakdown; (b) Performance metrics heatmap. 
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exacerbates aging mechanisms across 

electrochemical and electronic domains, and 

cumulative degradation ultimately constrains the 

system’s functional lifespan. As rigorously 

quantified in Fig. 15(a) and (b), the proposed 

hierarchical control framework consistently 

outperforms conventional strategies across all 

evaluated economic indicators, thereby offering a 

robust and cost-effective solution for FCHEV 

energy management under realistic and 

dynamically varying urban driving conditions. 

4.3. Clarification on adaptive gain formulation: 

The adaptive gains 𝜇𝑝 and 𝜇ᵢ in the proposed 

controller are not fixed constants but are 

computed in real-time using the normalization 

scheme defined by (86) and (87). In this section, 

the sensitivity analysis is conducted by varying 

scaling coefficients (𝜎𝑝, 𝜎𝑖) to understand their 

individual and combined impact on system 

performance. This method directly reflects how a 

control engineer would tune the adaptive 

controller in practice. The nominal values from 

our original study were σp= 0.35 and σi = 0.6. 

The performance was evaluated under the WLTC-

Class 3 driving cycle using four key metrics, and 

the corresponding results are summarized in the 

Table 2. 

1. Integral of absolute voltage error (IAVE): 

∫ |VDC − VDC
ref|dt, measuring overall voltage 

regulation accuracy. 

2. Maximum voltage overshoot: The peak 

positive deviation from the 380V reference 

during transients. 

3. Settling time: Time required for DC bus 

voltage to enter and remain within a ±2V 

band after startup. 

4. Average voltage ripple: Average peak-to-peak 

voltage fluctuation during steady-state 

conditions. 

The analysis reveals a clear performance trade-

off governed by the scaling coefficients: 

■ Low values (Cases A, B): Low values for 

both σp and σi result in slow adaptation, leading 

to a sluggish response, poor disturbance rejection, 

and the highest value of IAVE. The controller 

fails to keep up with the dynamic power demands 

of the drive cycle. 

■ High σp and low σi (Case F): An excessively 

high σp relative to σi makes the proportional 

action too aggressive. This causes significant 

overshoot and voltage oscillations during 

transients, increasing stress on the components 

despite a fast settling time. 

■ Low σp and high σi (Case G): A high σi with 

low σp results in an overly dominant integral 

action. This eliminates overshoot but leads to a 

very slow response, failing to mitigate voltage 

dips effectively during rapid acceleration. 

■ Moderate values (Case C): This case 

represents a conservative tuning approach. With 

both gains lower than the nominal values, the 

adaptive mechanism becomes more cautious. This 

results in good stability with minimal overshoot 

(3.5V) but at the cost of a slower response 

Table 2: Sensitivity analysis of adaptive controller scaling coefficients (σp, σi). 

Case 
Scaling Coefficients (𝛔𝐩, 

𝛔𝐢) 
IAVE (𝐕 ·
𝐬) 

Max Overshoot 

(𝐕) 
Settling 

Time (𝐬) 
Average Voltage 

Ripple (𝐕) 
Qualitative Assessment 

A (0.10, 0.10) 214.5 5.2 52.1 3.5 
Very sluggish adaptation, poor 

disturbance rejection. 

B (0.20, 0.40) 165.3 4.1 31.8 2.8 
Slow response, high cumulative 

error. 

C (0.30, 0.50) 121.7 3.5 18.9 2.2 
Good performance, approaching 

optimal. 

D (0.35, 0.60) [Tuned] 98.4 2.8 12.3 1.7 
Optimal balance: Robust and 

responsive. 

E (0.50, 0.55) 105.2 3.3 9.5 1.9 Fast but slightly oscillatory. 

F (0.60, 0.30) 142.8 4.5 8.1 2.6 
Aggressive proportional action 

causes overshoot. 

G (0.25, 0.80) 135.6 3.1 25.4 2.3 
Overly conservative integral 

action, slow. 
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(settling time of 18.9s). The IAVE (121.7 𝑉. 𝑠) is 

significantly higher than the nominal case, 

indicating that the controller is too slow to correct 

voltage deviations effectively during aggressive 

transients in the WLTC cycle. It demonstrates that 

under-damping the adaptation process leads to a 

lag in the system's response. 

■ Tuned values (Case D): The combination σp= 

0.35 and σi = 0.60 achieves the best compromise. 

It provides a fast enough response to handle 

transients (low settling time) while maintaining 

excellent stability (low overshoot and ripple), 

resulting in the lowest IAVE. 

This sensitivity analysis confirms that the 

scaling coefficients selected for the proposed 

controller are not arbitrary but represent a 

carefully tuned balance. The σp/σi ratio of 

approximately 0.58 found in Case D proves to be 

optimal for the specific dynamics of the FCHEV 

powertrain, effectively managing the trade-off 

between responsiveness and damping. 

5. Conclusions 
This study presented a novel hierarchical nested 

cascade control framework aimed at enhancing 

voltage regulation and current management in 

FCHEVs. The proposed architecture successfully 

addressed the limitations of conventional cascade 

control systems by reducing design complexity 

and improving operational resilience under 

dynamic and uncertain conditions. Through the 

integration of adaptive proportional–integral 

control and backstepping techniques across three 

coordinated control layers, OCL, MCL, and ICL, 

the system achieved precise regulation of DC bus 

voltage and current flow among FCs, batteries, 

and SCs. The simulation results validated the 

effectiveness of the proposed energy management 

strategy, particularly in Case 1, which consistently 

outperformed Cases 2 and 3 across multiple 

performance metrics. Case 1 demonstrated the 

lowest current ripple, minimized instantaneous 

power demand from auxiliary sources, and 

facilitated optimal FC utilization. These attributes 

collectively contributed to reduced thermal stress, 

enhanced energy efficiency, and prolonged 

component lifespan. Furthermore, Case 1 

achieved a more balanced power distribution, 

smoothing transient responses and mitigating 

electrical and thermal stress on the battery and 

SC. Battery SOC analysis revealed that Case 1 

maintained a higher final SOC, indicating more 

controlled and sustainable battery usage. Voltage 

ripple analysis further confirmed the superiority 

of Case 1, with significantly smoother voltage 

profiles throughout the drive cycle. In contrast, 

Cases 2 and 3 exhibited higher ripple levels and 

less efficient load sharing, leading to increased 

component degradation and suboptimal system 

performance. Overall, the findings underscored 

the robustness and scalability of the proposed 

EMS architecture. By directly employing physical 

control inputs and eliminating virtual controllers, 

the system reduced inter-layer interference and 

improved real-time responsiveness. The modular 

design also allowed for future integration of 

advanced control policies, making it a promising 

solution for next-generation FCHEV energy 

management systems. The demonstrated 

improvements in voltage stability, current 

regulation, and energy distribution confirmed the 

potential of this approach to deliver reliable, 

efficient, and durable performance in multi-source 

hybrid electric powertrains. 

5.1. Future work 

While this study has demonstrated the efficacy 

of the proposed hierarchical nested cascade 

control framework within a FC/battery/SC hybrid 

system, its underlying architecture is inherently 

modular and holds promise for broader 

application. Future work will focus on extending 

and validating this control strategy across diverse 

hybrid powertrain configurations. This includes 

integration with other energy storage and 

conversion technologies, such as hydraulic 

accumulators and flywheels, as suggested in 

parallel research [30]. Investigating the 

framework's performance in such multi-source 

environments will further solidify its 

generalizability, robustness, and potential as a 

scalable solution for next-generation hybrid 

vehicle energy management systems. Also, other 

future work will focus on integrating a health-

aware layer into the EMS, potentially employing a 

hybrid model predictive and fuzzy logic control 

for real-time state of power estimation [31], to 

dynamically adapt power allocation based on 

battery degradation state and further prolong 

component lifespan. 
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List of symbols 

𝐸𝑐𝑒𝑙𝑙
0  

Standard reversible potential (~1.23V for 

PEMFC) 

𝜅  Universal gas constant (8.314 J/mol·K) 

𝑇  Operating temperature (K) 

𝐹 Faraday’s constant (96,485 C/mol) 

𝑗 Current density (A/cm²) 
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𝑗0 Exchange current density (catalyst-dependent) 

𝛼 Charge transfer coefficient (~0.5 for PEMFC) 

𝑛 Number of electrons transferred (2 for H₂) 

𝑅𝑜ℎ𝑚
𝐹𝐶  

Total area-specific resistance (membrane + 

contacts) 

𝑗𝐿  
Limiting current density (gas diffusion-

dependent) 

𝑃𝐻2𝑂
𝑎𝑛𝑜𝑑𝑒 The water vapor pressure at the anode 

𝑃𝐻2𝑂
𝑐𝑎𝑡ℎ𝑜𝑑𝑒 The water vapor pressure at the cathode 

𝑦𝑂2 0.21 (mole fraction of 𝑂2 in air) 

𝑅𝐻 The relative humidity (0–100%) 

𝑆𝑂𝐶0 Initial SOC (100% for a fully charged battery) 

𝑄𝐵𝑎𝑡
𝑛𝑜𝑚 Nominal battery capacity (Ah) 

𝐼𝐵𝑎𝑡 
Battery current (A), positive for discharge and 

negative for charge 

𝐼𝑆𝐶  
SC current (A), positive for discharge and 

negative for charge 

𝑖𝑜𝑢𝑡
𝐸𝑆𝑆 Total current of ESS (battery and SC) 

𝑚 The vehicle mass 

𝑔 The gravitational acceleration 

𝜃 
The road inclination angle (fixed at 5° ≈ 

0.087 rad) 

𝐶𝑟 The rolling resistance 

𝜌 The air density 

𝐶𝑑 The drag coefficient 

𝐴 The vehicle’s frontal area 
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