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The escalating proliferation of electric vehicles (EVs) as a pivotal
solution to address energy consumption and air pollution challenges
within the transportation sector necessitates a comprehensive
understanding of the factors influencing their performance and driving
range. Among these factors, driving patterns exert a direct and significant
impact on energy consumption and battery state. This study aims to
quantify the influence of diverse driving cycles on the performance of an
electric vehicle, specifically the Audi e-tron 50. Utilizing Simcenter
Amesim software, a longitudinal vehicle dynamics model, coupled with
an equivalent circuit model (ECM) for the lithium-ion battery, was
developed for simulation purposes. The vehicle's performance was
evaluated under five distinct driving cycles, including global standards
(WLTC, NEDC, HWFET) and two real-world driving cycles recorded in
Tehran (Routel, Route2). Key parameters such as state of charge (SoC),
depth of discharge (DoD), battery temperature, and estimated driving
range were analyzed. The results revealed a significant impact of driving
cycles on all investigated parameters. Driving cycles characterized by
higher speeds and accelerations (e.g., WLTC and HWFET) led to
increased specific energy consumption, accelerated temperature rise, and
a notable reduction in estimated driving range (with the lowest range
observed in WLTC). Conversely, milder urban driving cycles
(particularly Routel) resulted in improved energy efficiency, minimal
thermal stress, and the highest estimated driving range. These findings
underscore the critical importance of considering real-world and
localized driving patterns for accurate performance evaluation, range
estimation, and the development of optimized energy management
strategies in electric vehicles.

1. Introduction

Considering the critical value and scarcity of
energy resources, optimal consumption
management is essential[1]. One of the
greatest challenges associated with energy
consumption is the increasing emission of
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greenhouse gases (GHGs), which has
intensified with population growth and
industrial activities [2,3]. The transportation
industry, accounting for approximately 21%
of global energy consumption, has a
significant share in this challenge [4].
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Therefore, reducing reliance on internal
combustion engines (ICEs) due to their low
efficiency is considered a key solution for
decreasing  energy  consumption and
pollution. Although a major portion of the
world's energy is still supplied by non-
renewable sources such as oil, coal, and
natural gas, strategies such as reducing
vehicle weight, increasing energy efficiency,
improving fuel quality, developing new
technologies, and strengthening sustainable
public transportation can contribute to the
realization of a clean transportation system
[5]. Among these, all-electric transportation
systems have garnered special attention at
both public and industrial levels. However,
challenges such as the limited driving range
of electric vehicles (EVs) further emphasize
the importance of developing and evaluating
optimal control strategies. These strategies
are designed with the aim of reducing
energy consumption, increasing efficiency,
and consequently reducing greenhouse gas
emissions. Therefore, continuous review and
improvement of these solutions is a
fundamental step towards achieving
sustainable and environmentally friendly
transportation. The global trend in research
in recent years has leaned towards the
development of vehicles with alternative and
renewable fuels instead of internal
combustion engines. In this direction,
electric vehicles (EVs) are recognized as the
flagbearers of clean transportation because,
unlike their gasoline and diesel counterparts,
they do not emit any direct pollutants (such
as sulfur, carbon, or nitrogen compounds)
during operation [6,7]. The appeal of electric
vehicles is not limited to their cleanliness;
high energy efficiency, better controllability,
and the ability to provide the required torque
without a gearbox are other prominent
technical advantages that paint a bright
future for them in the transportation industry
[8]. Nevertheless, significant challenges also
exist in the path to the long-term
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sustainability and efficiency of electric
vehicles, which are mainly attributed to their
vital component, the battery pack [9].
Optimal battery design and performance are
determining factors not only in the driving
range and power of the vehicle but also in its
economic aspects and lifespan [10]. Among
these, lithium-ion batteries (LIBs), due to
their excellent characteristics such as high
energy density, lightweight, long cycle life,
low self-discharge rate, and suitable
charging speed, have become the gold
standard for energy storage in modern
electric vehicles and play a fundamental role
in improving the overall efficiency of these
vehicles. Consequently, with the increasing
demand for EVs, a large portion of research
is focused on optimizing their performance,
especially in the field of energy management
and increasing battery lifespan [11]. High
performance and long lifespan are two key
factors for customer satisfaction in all
modern vehicles. In the field of electric
vehicles (EVs), these two factors are heavily
influenced by the battery's condition. For
this reason, the accurate estimation of the
battery's "State of Charge" (SoC) and "State
of Health" (SoH) has garnered widespread
attention in scientific and industrial circles
worldwide. These two vital parameters play
a decisive role in the efficiency, driving
range, and overall durability of electric
vehicle batteries, highlighting the necessity
for their precise evaluation. Accurate
monitoring of SoC and SoH not only
optimizes the daily performance of the
vehicle but also provides essential
information for long-term decisions such as
battery  replacement  scheduling and
maintenance programs. Ultimately, these
metrics are crucial for the optimal use of
battery energy, enhancing overall vehicle
performance, and ensuring the economic and
environmental sustainability of electric
transportation [12].

Automotive Science and Engineering (ASE) 4797
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1.2 State of Charge (SoC): The Electric
Vehicle's Fuel Gauge
The State of Charge (SoC) is a key indicator
that shows electric vehicle (EV) users the
amount of energy remaining in the battery,
functioning similarly to a fuel gauge in
traditional vehicles[13]. Accurate knowledge
of the SoC is essential for important
decisions such as planning for recharging
and estimating the distance that can be
traveled  with  the current charge.
Furthermore, correct SoC assessment helps
to optimize the utilization of the battery's
capacity and contributes to increasing the
battery's lifespan by
overcharging or deep discharge. Real-time

preventing

SoC information allows drivers to plan their
trips more efficiently, manage their energy
consumption patterns, and minimize the risk
of sudden charge depletion. Therefore,
accurate  SoC monitoring is vital for
enhancing reliability and improving the user
experience in electric vehicles [14,15].

Despite significant advancements in electric
vehicle (EV) technology, challenges remain,
particularly in the areas of optimizing
battery charging and managing energy
consumption during driving. Of course,
previous studies (such as Hamza et al.) [16]
have confirmed that electric vehicles possess
inherent advantages over internal
combustion engine vehicles regarding
energy efficiency and emission reduction.
However, developing intelligent energy
management strategies is essential to fully
realize this potential. Recent research by Du
et al. and Rezaei et al. [17,18] has shown
that such strategies can significantly reduce
energy consumption and extend battery
lifespan. The success of these systems
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hinges on their ability to make optimal and
dynamic decisions based on instantaneous
driving conditions and accurately predict
driver behavior. In this regard, the
importance of using real-world driving data
is highlighted, as demonstrated by the study
of Zhang et al. (2021) [19]; leveraging
driving cycles extracted from real data
significantly improves the performance of
machine learning algorithms in predicting
future driving conditions. In addition to
energy management, a review of previous
studies indicates that the cost of diagnostic
systems and the phenomena of wear and tear
of components (especially the battery) are
also significant challenges for electric
vehicles.

Given the increasing global demand for
personal vehicles and the environmental
consequences of fossil fuel consumption and
greenhouse gas emissions, the transition to
cleaner transportation systems, including
electric vehicles (EVs), is of paramount
importance. The transportation sector
contributes significantly to greenhouse gas
emissions. Although EVs offer a promising
solution for reducing emissions and possess
technical advantages like high energy
efficiency, their performance is heavily
influenced by crucial factors such as battery
health and driving patterns.

Previous studies have highlighted the
importance of using real-world driving data
to assess EV performance and develop
energy management strategies. However,
limited research has specifically investigated
the simultaneous impact of these factors
under the distinct traffic patterns of
megacities like Tehran. Therefore, this
research aims to comprehensively examine
the effect of different driving patterns
(including global standard cycles and real-
world Tehran cycles) on the propulsive
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performance, energy consumption, battery
State of Charge (SoC), battery temperature,
and Depth of Discharge (DoD) of EVs under
actual Tehran driving conditions.

This study focuses on the Audi e-tron 50 to
provide a deeper understanding of the key
factors affecting the efficiency and
sustainability of electric vehicles. It utilizes
longitudinal ~ dynamic  simulation in
Simcenter Amesim software and an
equivalent circuit model for the lithium-ion
battery. The results of this research are
expected to contribute to the development of
energy consumption optimization and
battery management strategies tailored to
real-world driving conditions.

2. Modeling

This study focuses on the simulation and
analysis of the dynamic performance of an
electric vehicle (EV) utilizing Amesim
software.

The wvehicle's performance was initially
assessed based on the Worldwide
Harmonized Light Vehicles Test Cycle
(WLTC). Subsequently, these results were
compared with those obtained from the New
European Driving Cycle (NEDC) to achieve
a better understanding of the vehicle's
behavior under various urban conditions.
These standard driving cycles were selected
due to their more accurate reflection of real-
world traffic and road conditions. The
technical specifications and key parameters
of the reference EV are presented in Table 1.

3. Longitudinal Dynamics

This section is dedicated to evaluating the
power and energy requirements of the
vehicle's powertrain based on the physical
principles governing motion. Accordingly,
the analysis focuses on the dominant
resistive forces, namely aerodynamic drag,
rolling resistance, and grade resistance.

Ansari Laleh et al.

Table 1: Specifications of the Audi e-tron 50 Vehicle

Parameter Value Unit

Vehicle dimensions

4901/1935/1616 M
(L/W/H) m
Mass 2445 Kg
Maximum Motor 540 Nm
Torque
Maximum motor 730 W
Power
Vehicle aero drag 0.28
Vehicle front area 2.65 m?

It should be noted that within this study,
consideration is limited to longitudinal
forces acting on the vehicle, although
numerous forces are present under real-
world conditions. Among these, Fr
represents the rolling resistance force, while
F, Fp, and Fs denote the resistive forces due
to acceleration (inertia), aerodynamic drag,
and road slope, respectively. These forces
play a fundamental role in -calculations
related to the vehicle's energy and power
requirements and are, therefore, of great
importance in the optimal design of the
powertrain system for electric vehicles
[20,21].

Fr=Fr+F;+Fp+Fs (1)
Fr = Cr X Mg Cos(a) (2)
=M Y 3
Fi=M 3 3)
1
Fp= 3 CppA (Vrel'f_ch'r)2 4)
Fs = Mg sin(a) (5)

Pr = Fr X Vimax (6)
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EBattery =Prxt=CxV (7)

Several factors influence the amount of
resistive force acting on a vehicle while in
motion, among the most important of which
are the vehicle's mass (M) and the rolling
resistance coefficient (Cr). Additionally, the
drag coefficient (Cp) and air density (p)
directly affect the aerodynamic drag force,
and the vehicle's frontal area (A) is also a
key factor in calculating this force.
Furthermore, the wvehicle's instantaneous

speed (Vi) and its maximum achievable

speed (Vmax) determine the amount of
power required to overcome these resistive
forces. To supply this power, the energy
stored in the battery pack (Epatery) must be
sufficient to provide the vehicle's required
power (Pr) for a specific duration (t).
Finally, the battery capacity (C), measured
in Ampere-hours (A.h), and the battery pack
voltage (V) also influence the total amount
of storable energy and, consequently, the
vehicle's driving range.

4. Battery

The 2022 Audi e-tron 50 quattro[22], with
its 71.2 kWh configuration, offers an
engineered and optimized structure for
electric performance. Equipped with a
lithium-ion battery and a usable capacity of
64.7 kWh, this vehicle can achieve a range
of 336 kilometers (according to the WLTP
standard). The battery pack consists of 324
cells organized into several modules
(108s3p). These modules are designed to
enhance safety, thermal management, and
repairability, and they help maintain a
voltage of 400 volts. This modular structure
increases energy density and optimizes
battery cooling under various conditions. An
equivalent circuit model has been used for
battery modeling in this research.

4800 Automotive Science and Engineering (ASE)

Table 2. Battery Pack Specifications [22]

Parameters Value Unit
Pack Capacity 71.2 kWh
Pack power 230 kW
Pack Voltage 400 v
Cell Capacity 60.537 Ah
Total mass of cell 580 kg
Number of cells in Parallel 3 -
Number of Cells in Series 108 -

4.1 Modeling Battery Dynamic Behavior
Using an Equivalent Circuit Model (ECM)

Equivalent Circuit Models (ECMs) [23] are
employed to describe and predict the
dynamic behavior of batteries, particularly at
the battery pack level. By combining
lumped elements like resistors and
capacitors, these models can simulate
battery performance under various operating
conditions, including different discharge
rates, temperatures, and states of charge
(SoC). The main advantages of using ECMs
lie in their simplicity, ease of
implementation, and the relatively small
number of adjustable parameters required,
making them a common choice in many
studies and simulations [24]. Despite their
simplicity, these models can represent the
dynamic behavior and governing equations
of the battery with reasonable accuracy. The
ability of ECMs to predict performance
makes them highly valuable for the optimal
design of battery packs in specific
applications, such as electric vehicles (EVs)
or power tools. Various types of ECM
structures can be utilized. In modeling
battery packs, it is often assumed that all the
constituent cells of the pack are identical.
This assumption allows the combined
effects of the cells, along with additional
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Figure 1: Schematic of the Battery Equivalent
Circuit

resistances arising from internal connections
and other components, to be represented by
a single equivalent circuit (as shown in
Figure 1).

In Figure 1, the additional resistance (Radd)
depends on the number of series and parallel
cells and the cell parameters. To calculate
the State of Charge (SoC), the following
relationship is used [25]:

dsoc I (8)
T =100 X a X Ntarad
where Q' is the available battery capacity in
Ampere-hours. Additionally, to calculate the
overall voltage drop, the additional
resistances are taken into account:

AUuq9 = —I X Ry4q )

Other voltage drops, including hysteresis
drop (AUhnyst), ohmic drop (AUohm), charge
transfer drop (AUg), and diffusion drop

AUgifr, are expressed by the following
relationships, respectively:

AUy = OCV,qg — OCV (10)
AUy = =1 X Ry (11)
AU, = —I X R, (12)
Nrc (13)

AUSH = Z A Ugigeli]
=1

Ansari Laleh et al.

Therefore, the total voltage drop is
calculated as follows:

AUtotaI = AUadd + AUhyst + AUohm (14)
+ AU, + AU

This equivalent circuit model contributes to
the accurate analysis and prediction of
battery pack performance under various
operating conditions.

4. Driving Cycle

A driving cycle is defined as a speed-time
profile representing a characteristic driving
pattern within a specific environment, such
as urban or highway conditions. These
cycles serve as fundamental tools for
analyzing and evaluating vehicle
performance, particularly for electric
vehicles (EVs), under diverse operational
conditions[26]. Driving patterns and their
corresponding cycles exhibit significant
variability across different regions due to
disparities in factors, including road
infrastructure, route types, vehicle fleet
composition, traffic conditions, driving
culture, socio-geographical characteristics,
and urban scale. This inherent diversity
underscores the importance of selecting or
developing appropriate driving cycles that
accurately represent real-world conditions
for vehicle performance studies, particularly
for the design and evaluation of energy
management strategies. Consequently, to
gain a more precise understanding of electric
vehicle performance, simulations are
commonly employed to evaluate the
vehicle's dynamic behavior under standard
or locally developed driving cycles [27]. In
the present study, to achieve a
comprehensive evaluation, the performance

Automotive Science and Engineering (ASE) 4801
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of the subject electric vehicle is analyzed
and compared using a suite of international
standard driving cycles—including the
Worldwide Harmonized Light Vehicles Test
Cycle (WLTC), the New European Driving
Cycle (NEDC), and the Highway Fuel
Economy Test cycle (HWFET)—alongside
several specific driving cycles derived for
the Tehran metropolis. This approach
facilitates the examination of the vehicle's
behavior across a broader spectrum of
driving patterns and conditions.

4. Model Validation

Figure 1 presents four bar charts that offer a
comprehensive comparison between the
simulated values of the developed model and
the declared values for four key performance
criteria of an electric vehicle. This comparison
aims to validate the accuracy of the simulation
model in predicting the dynamic behavior and
energy consumption of the vehicle, based on
official and standard information. As observed
in the charts, for the driving range criterion in
the WLTC cycle, the simulated range (340 km)
shows a very minor difference of only 4 km
compared to the declared range (336 km) under
low energy conditions of the WLTC test. This
indicates the model's excellent accuracy in
predicting the vehicle's real driving range
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Figure 7: Comparison of four key electric vehicle performance metrics with simulated results versus declared

under a standard cycle, significantly
enhancing the model's credibility in
evaluating energy consumption and driving
range. Regarding maximum speed, the
simulation model predicted a maximum
speed of 193.9 km/h, while the declared
value is 190 km/h. This relatively small
difference (approximately 3.9 km/h) still
demonstrates a strong correlation between the
model and reality. Possible reasons for this
discrepancy could include minor differences
in aerodynamic coefficients or rolling
resistance used in the simulation compared to
actual measurement conditions. In terms of
charging time (0% to 80% with a 120 kW DC
charger), the simulated charging time is 32
minutes, and the declared charging time for
the same conditions is 30 minutes. This small
difference, which is less than 7%, indicates
that the model is capable of adequately
simulating the battery charging process and
its thermal management during fast DC
charging. Minor discrepancies may arise
from more precise charging curves, initial
battery temperature, or the efficiency of the
charging system under real conditions.

values.

Finally, for 0-100 km/h acceleration, the
simulated time is 7.2 seconds, and the
declared time is 6.8 seconds. This difference
is also relatively small (0.4 seconds) and
demonstrates the model's ability to simulate
vehicle dynamics and  powertrain
performance, where factors such as exact
vehicle mass, road friction, or the
instantaneous response of the motor and
gearbox could play a role in this minor
difference. Overall, the comparison between
the simulation results and the declared data
demonstrates a very good agreement of the
developed model. The high accuracy in
predicting driving range, along with a strong
correlation in predicting maximum speed,
charging time, and acceleration, strongly
confirms the model's validity for use in
future studies, parameter optimization, and
evaluating various performance scenarios of
electric vehicles. This validation is an
important step towards trusting the results
obtained from modeling and simulation in
the design and analysis process of electric
vehicles.

Automotive Science and Engineering (ASE) 4803
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Figure 8: Comparison of battery SoC over time
under five different driving cycles.

Given that the simulated electric vehicle is
fully electric and the battery pack acts as its
sole energy source, the overall performance
of this vehicle is directly related to the actual
state of the battery. Furthermore, how
electric vehicles consume energy in real-
world driving conditions is also a
determining factor. The simulation results
are presented in detail below.

Figure 8 illustrates the evolution of the
battery's State of Charge (SoC) over time for
the five driving cycles under investigation
(WLTC, NEDC, HWFET, Routel, and
Route2). The vertical axis represents the
SoC percentage, and the horizontal axis
represents time in seconds. All cycles start
from the same initial charge level,
approximately 90%. The general trend of the
graph shows a decrease in SoC over time for
all profiles, which is due to the energy
consumed by the battery to supply the power
required by the vehicle's powertrain during
the driving cycle. The main difference lies in
the decrease in the rate of SoC and the final
SoC value at the end of each cycle, which is
directly dependent on the power demand of
that cycle. Specifically, the HWFET cycle
(highway driving simulator), characterized
by high speeds and relatively strong
accelerations, has the highest average power
demand in its short duration; therefore, we
observe the fastest rate of SoC decrease in
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this profile, reaching approximately 86.25%
in about 800 seconds. Conversely, the
Routel cycle (one of the Tehran driving
cycles), which likely involves lower speeds,
gentler accelerations, and more stops, has
the lowest average power demand; this
results in the slowest rate of SoC decrease
and consequently the highest final SoC level
(87.6%) among the longer duration cycles.
The WLTC cycle consumes the most energy
overall, as it covers a wide range of driving
conditions, including phases with high
speeds and acceleration, particularly towards
the end of the cycle, resulting in the lowest
final state of charge (SoC) level of 83.8%.
The negative slope of the WLTC curve
becomes steeper after about 1000 seconds,
especially after 1500 seconds, which is due
to entering driving phases with higher power
demand in the later stages of this standard
cycle. The NEDC and Route2 cycles
(another Tehran driving cycle), due to
having speed and acceleration profiles with
moderate power demand, exhibit
intermediate rates of SoC decrease and final
SoC values (approximately 87.34% and
86.78%, respectively) compared to the other
cycles. Therefore, the differences observed
in the graph are directly attributable to the
differences in the instantaneous and average
energy and power required to follow each of
these driving patterns.
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Figure 9: Comparison of battery DoD over time
under five different driving cycles
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Figure 9 displays the changes in the battery's
Depth of Discharge (DoD) over time for five
different driving profiles. These profiles
include the standard driving cycles WLTC
and NEDC, the highway driving cycle
HWFET that simulates driving conditions
on highways and open roads, and two
defined routes related to driving cycles in
the city of Tehran (Route 1 and Route 2). As
observed, all tests commence from a similar
starting point with a 10% Depth of
Discharge. Over time, the DoD increases for
all profiles, but the rate of this increase and
its final value vary depending on the type of
driving profilee. The HWFET (highway)
profile exhibits the fastest rate of DoD
increase in a shorter time frame (up to
approximately 765 seconds), reaching about
13.74%, which indicates higher energy
consumption per unit of time for this type of
driving condition. In contrast, the Routel
profile (one of the Tehran driving cycles)
has the lowest slope of DoD increase and
reaches the lowest DoD value among the
longer duration profiles (12.4%) at the end
of the observed time frame (approximately
1910 seconds), suggesting the gentlest
energy consumption pattern in that specific
traffic condition. The WLTC cycle, which
covers the most extended duration,
ultimately reaches the highest DoD, over
16.2 %, and the slope of the DoD increase
becomes steeper, especially after 1000
seconds. The NEDC and Route 2 profiles
(the other Tehran driving cycle) show
moderate consumption patterns, ending at
approximately 1180 and 1600 seconds, with
final DoD wvalues of 12.65% and 13.21%,
respectively.  These  results  clearly
demonstrate that the driving pattern, whether
it is a global standard, real urban traffic
conditions like Tehran, or highway driving,
has a direct impact on the rate and amount
of battery energy discharge, and different
cycles can lead to varying levels of stress on
the battery.

Ansari Laleh et al.
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Figure 10: Comparison of battery temperature
changes over time under five different driving
cycles.

Figure 10 illustrates the battery temperature
profile over time for the five different
driving cycles (WLTC, NEDC, HWFET,
Routel, and Route2) that were previously
analyzed in terms of depth of discharge.
Observations indicate that the initial battery
temperature at the start of all cycles was the
same, approximately 25 °C. However, the
rate of temperature increase over time varies
for each cycle, indicating the influence of
the driving pattern on heat generation within
the battery. The HWFET cycle (highway
driving simulator), which exhibited a high
discharge rate, shows the fastest rate of
temperature increase in its short duration (up
to about 765 seconds), reaching a
temperature of 29.45 °C. This confirms the
correlation between high power demand and
greater heat generation. The WLTC cycle,
although initially having a gentler
temperature increase compared to HWFET,
eventually reaches the highest final
temperature, close to 34.7 °C, over the
longest duration (1800 seconds). The rate of
temperature increase in this cycle notably
increases, especially after the 1000-second
mark, which aligns with the increased
discharge rate observed in the previous
chart. Conversely, the Routel cycle (related
to driving in Tehran), which showed the
lowest depth of discharge, also has the
lowest slope of temperature increase,
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Figure 11: Comparison of Estimated Driving
Range of Electric Vehicle Under Five Different
Driving Cycles.

reaching a temperature of 29 °C at the end of
the time frame, indicating the least thermal
stress among the cycles. The NEDC and
Route 2 cycles (another Tehran driving
cycle)  exhibit intermediate  thermal
behavior, reaching final temperatures of
28.6 and 29.3 °C, respectively. These results
emphasize that the characteristics of the
driving cycle not only affect the amount of
energy consumption but also significantly
influence  the thermal profile and
temperature management of the battery.

The bar chart in Figure 11 compares two key
parameters for the five studied driving
cycles: WLTC, NEDC, HWFET, Routel,
and Route2. The orange bars represent the
defined or recorded length of each cycle; for
example, the WLTC cycle, at 23.410
kilometers, covers the longest distance
among these cycles, while the NEDC, at 11
kilometers, is the shortest. The green bars
represent the estimated driving range of the
vehicle, typically calculated based on the
specific energy consumption (usually in
Watt-hour per kilometer - Wh/Km)
measured during each test cycle. Analyzing
these bars in comparison to the distance bars
highlights a crucial point: the energy
efficiency and the estimated range are
significantly affected by the attributes of the
driving cycle. Cycles such as WLTC and
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HWFET, which have high-speed phases and
frequent, strong accelerations, lead to
increased specific energy consumption
(Wh/Km). This is due to the higher power
required to overcome resistive forces
(aerodynamic and inertia) at high speeds and
accelerations, as well as the lower efficiency
of the powertrain system under these
conditions. For this reason, despite the
longer distance of the WLTC cycle, the
resulting estimated range (340 kilometers) is
the lowest among the cycles. The HWFET
cycle, due to its highway nature and high
speeds, also has relatively high energy
consumption, resulting in a medium to low
estimated range (398 kilometers).

Conversely, cycles like Routel and, to some
extent, NEDC, which represent gentler
driving patterns with lower average speeds
and smoother accelerations, lead to reduced
specific energy consumption and improved
energy efficiency. Under these conditions,
less energy is consumed per kilometer
traveled. The primary reason for the higher
estimated range in these cycles, particularly
Route 1, which has an estimated range of
about 477 kilometers, and NEDC, with an
estimated range of approximately 373
kilometers, is improved energy efficiency,
even though the NEDC test cycle distance is
relatively short. In contrast, Route 2, which
features intermediate energy consumption
and efficiency characteristics, offers a more
moderate estimated range of 431 kilometers.
This chart clearly illustrates that driving
patterns significantly ~ impact  both
instantaneous and average energy efficiency,
which in turn plays a crucial role in
determining the final achievable driving
range of an electric vehicle.

4. Conclusion
This research aimed to evaluate the

longitudinal dynamic performance and
energy consumption of an electric vehicle
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(Audi e-tron 50) under the influence of
various driving cycles, using simulation in
Simcenter Amesim software and employing
an equivalent circuit model for the lithium-
ion battery. The analysis of the simulation
results on global standard cycles (WLTC,
NEDC, HWFET) and real-world driving
cycles recorded in the city of Tehran
(Routel, Route2) demonstrates the
significant impact of the driving pattern on
key vehicle performance parameters.

The main findings of this study are as
follows:

1. Energy Consumption and State of
Charge (SoC/DoD): Driving
patterns with high speeds and
frequent accelerations, such as the
HWFET highway cycle and parts of
the WLTC cycle, lead to the highest
instantaneous energy consumption
rates and, consequently, the fastest
decrease in SoC and increase in
Depth of Discharge (DoD). In
contrast, gentler urban driving cycles
like Routel, due to lower speeds and
smoother accelerations, exhibit the
lowest energy consumption and, as a
result, the slowest battery discharge
rate. These differences emphasize
the importance of adapting energy
management strategies to real-world
driving conditions.

2. Battery Temperature: The battery
temperature profile is directly related
to the energy consumption pattern.
Cycles with high power demand
(such as HWFET and WLTC) cause
a faster increase and reaching higher
temperatures in the battery pack,

Ansari Laleh et al.

which can affect battery health and
lifespan. Milder cycles like Routel
impose the least thermal stress on the
battery.

3. Estimated Range: The results
clearly show that the wvehicle's
achievable range is highly influenced
by the energy efficiency in each
driving cycle. More aggressive
cycles (WLTC and HWFET), due to
higher specific energy consumption
(Wh/km), lead to a reduction in the
estimated range, with the WLTC
cycle yielding the lowest estimated
range (340 kilometers) despite its
longer distance. Conversely, urban
cycles like Routel, by providing the
best energy efficiency, enabled the
highest estimated range (477
kilometers). This finding highlights
the importance of using local and
real-world driving cycles for a more
accurate assessment of the range of
electric vehicles.

Overall, this study demonstrated that the
characteristics of the driving cycle, whether
standard or real-world, play a decisive role
in the energy consumption, state of charge,
battery thermal management, and final
driving range of an electric vehicle. The
results emphasize that considering real
driving patterns and local operating
conditions is essential for accurately
evaluating the performance and optimizing
the energy management systems of electric
vehicles. Although the initial research
objectives included investigating the impact
of different battery State of Health (SoH)
levels, the analysis of the results presented

Automotive Science and Engineering (ASE) 4807
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in this section primarily focused on
comparing  driving  cycles. It s
recommended  that  future  research
comprehensively investigate the combined
effect of driving cycles and different SoH
levels on performance and energy

consumption.
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