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Quarter-car model

This research proposes a robust fuzzy adaptive fractional-order
proportional-integral-derivative (PID) controller for an active suspension
system of a quarter-car model. For this, the research first designed the PID
controller using chassis acceleration and relative displacement. Next, it
utilized the chain derivative rule and the gradient descent mechanism to
formulate adaptation rules based on integral sliding surfaces. In the next
step, the control parameters were regulated by employing a fuzzy system
comprising the product inference engine, singleton fuzzifier, and center
average defuzzifier. Eventually, the optimum gains of the proposed
controller were determined by running a multi-objective material
generation algorithm (MOMGA). Simulation results implied the
superiority of the proposed controller over other controllers in handling
road irregularities.

Fuzzy system

1. Introduction

Over the past years, suspension systems (SSs)
have become a subject of interest for much
research, primarily owing to their potency to
deliver thrilling riding, conserve the chassis against
road roughness, lessen the unsuitable operations in
steering and braking, and improve the stability of
the wvehicles (Bagheri et al. 2011). All car
manufactures comprehend that comfortable
driving is a meaningful option for customers. They
further know that car body damage emanates from
vibrations caused by road bumps. Accordingly,
devising versatile SSs has become a central goal
for all car manufacturing companies.

The fist SSs developed were passive with a
damper and two springs enabling vibrational
energy absorption with no need for extra power
(Gadhvi et al. 2016). The next generation of such
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SSs were semi-active, enhancing driving quality
and stability by eliminating pitch and roll
movements and aftereffect deviations of the
braking. These low-frequency systems were
available in soft to hard form and could reduce
vibrations in the vehicle chassis and body (Ding et
al. 2023). And very recently, active SSs have been
proposed to synchronize enjoyable driving,
comfortable riding, and improved handling. These
systems can save, damp, and generate energy by
adjusting their features according to motion
conditions (Mahmoodabadi and Nejadkourki
2022).

Over the past decades, research has devised
diverse control approaches to handle nonlinear SSs
(Chen et al. 2025). Of all the control approaches
proposed, proportional-integral-derivative (PID)
controllers are sought-after by researches and
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industries owing to their simple structure and
application. For instance, a PID controller based on
a backpropagation neural network is presented in
(Jiang and Cheng 2023) for an air SS, where the
research reflects the stiffness of rubber bellows.
Elsewhere, PID and fuzzy logic controllers are
proposed in (Talib et al. 2023) to experimentally
investigate ride comfort SSs by running a firefly
algorithm. Similarly, ref. (Kumar and Rana 2023)
designs a fuzzy PID controller with an electro-
hydraulic actuator for nonlinear active SSs, where
the cost function is analyzed by fifty runs. A Pareto
optimality-based PID controller has been
employed in (Gampa et al. 2023) for a vehicle
active SS by running the grasshopper optimization
algorithm, with the aim of minimizing sprung mass
acceleration, tire deflection, and sprung mass
suspension deflection. Ref. (Li et al. 2022) devises
an improved fuzzy neural network PID controller
for an active SS, where body acceleration is
pondered as the main optimization target.

Merging fuzzy logic-based systems with
controllers can synergistically augment their
potency by utilizing human knowledge in the real
world. The two key facets reflected by these
controllers are insensitivity to environmental
factors and robustness. Recent research advocates
the efficacy of running fuzzy systems for tuning
parameters of control approaches. Some examples
are optimal fuzzy PID control (Melese et al. 2025),
nonlinear fuzzy PID control (Mohindru 2024),
adaptive fuzzy (AF) sliding mode (SM) control
(Zheng et al. 2024), self-AF PID control (Abut and
Soyguder 2022), fuzzy embedded PID control
(Venkataramanan et al. 2024), and AF
backstepping control (Liu et al. 2023).

When devising controllers, fractional-order (FO)
derivatives and/or integrals can provide the
systems with a versatile performance. Oustloup
(1988) first suggested applying FO calculus for
controllers. Next, Podlobny (1994) introduced a
FOPID approach as an illustrious FO controller
(Dadras and Momeni 2012). Research has implied
the efficiency of merging FO concepts with control
schemes. In (Nosheen et al. 2023), FO calculus has
been utilized to develop a sensorless speed control
aided with an extended Kalman filter for a closed
loop induction motor. Ref. (Naderipour et al. 2023)
has devised an optimal load-frequency self-tuning
FO fuzzy controller for an islanded microgrid to
attain robust performance and satisfying flexible
structure. An adaptive FOSM disturbance observer
(DO)-based robust theoretical frequency controller
has been utilized in (Guha et al. 2023) for a hybrid
wind—diesel power system to minimize chattering
in the control effort and attain promoted robustness
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against external disturbances. Ref. (Liu et al. 2023)
has employed a FO controller based on digital-
twin-based real-time optimization for industrial
robots modeled in a digital environment to realize
all-around 3D visual monitoring and strong
interactive. Elsewhere, ref. (Ansarian and
Mahmoodabadi 2023) reports a Fuzzy Adaptive
(FA) robust FOPID controller optimized by a MO
approach for a nonlinear unmanned flying system,
where the fuzzy systems employ the product
inference engine, center average defuzzifier,
singleton fuzzifier, and triangular-trapezoidal
membership functions.

In real applications of controller design,
balancing output errors and control efforts is
paramount. Metaheuristic (MH) algorithms mostly
utilized to optimize MO problems have recently
been sought-after by researchers (Peng et al. 2025).
Research implies the potency of these algorithms
in solving MO control problems. Ref. (Wang et al.
2023) reports a MO approach for a hydrogen-
fueled rotary engine based on GA and machine
learning (ML). Ref. (Tamashiro et al. 2023)
employs an optimal components capacity based
MO scheme and an optimal scheduling-based MPC
optimization algorithm for smart apartment
buildings. In (Zhou et al. 2023), an adaptive
adjustment inertia weight particle swarm
optimization (PSO) algorithm has been run used
for the optimal design of a cable-driven parallel
robot. Ref. (Abedzadeh Maafi et al. 2021) uses an
MOGA for the optimal design of a FA hierarchical
SM controller of an XZ inverted pendulum system.
Ref. (Kapnopoulos et al. 2022) uses a cooperative
PSO strategy containing position and attitude
control parameters for gain tuning of an MPC-
based quadrotor trajectory tracking scheme.

To enhance the breadth of recent advancements,
this study also considers the following
contributions:

*Multi-criteria suspension optimization
(Gheibollahi and Masih-Tehrani 2023)

*Fuzzy Sliding mode control in vehicle dynamics
(Najafi et al. 2023)

*Genetic  algorithms for vehicle design
(Gheibollahi et al. 2024)

*Stability under varying road conditions
(Damavandi et al. 2022)

*Semi-active suspension energy efficiency
(Nazemian and Masih-Tehrani 2020)

*[SO-based road roughness modeling (Nazemian
and Masih-Tehrani 2020)

*Vehicle dynamics under uncertainty (Nazemi et
al. 2022)

*Recent Hoo-based suspension control schemes
(Damavandi et al. 2025)
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*Robustness in suspension design (Najafi and
Masih-Tehrani 2022).

Contrary to (Bagheri et al. 2011, Ding et al.
2023) applying passive and semi-active SSs, the
present research proposes a hybrid controller by
merging FOPID compensators, sliding surfaces,
and fuzzy systems. This controller aims to stabilize
a nonlinear active SS. Hence, this research devises
a PID controller improved by FO concepts to
handle the nonlinear dynamics in the concerned
active SS. The sliding surfaces are calculated via
the system states to adapt the gains of the FOPID
controller according to the system conditions. This
research employs a fuzzy system based on the
center average defuzzifier, singleton fuzzifier, and
product inference engine to regulate the sliding
surface parameters. Contrary to (Talib et al. 2023,
Kumar and Rana 2023) that employ single
objective optimization, this research (after
designing the structure of the proposed control
system) uses the MO material generation algorithm
(MOMGA) to determine the optimal values of the
adaptation coefficients, fuzzy system parameters,
and fractional orders. The aim is to coincidently
minimize body acceleration and relative
displacement. Eventually, simulation results are
depicted to illustrate the potency of the proposed
method in handling the concerned active SS
compared to other controllers.

The remaining sections are organized as follows.
Section 2 discusses the dynamical formulations of
the active SS. Section 3 explain adaptive FOPID
controllers and fuzzy systems. Section 4, runs the
MOMGA to define the appropriate values of the
design coefficients. Section 5 presents the
simulation results to show the superiority of the
proposed method over recently introduced
methods. Ultimately, Section 5 concludes the
results and offers prospects.

2. Dynamical Equations

The dynamical equations of the active SS shown in
Figure 1 can be written as follows (Mahmoodabadi

and Nejadkourki 2022).

mrzr(t) + Cs[Zr(t) - Zs] + ks[Zr(t) - Zs(t)] +
kr[Zr(t) - Zw(t)] = _T(t) (1)
mgZg(t) + ¢ [Zs(t) - Zr] + ks [Zs(t) - Zs(t)] =
7(t) (2)

where 7(t) denotes the control effort. z,.(t) and
z,(t) are, respectively, the vertical displacement of
the tire and sprung mass, Z.(t) and Z,(t) denote
their vertical velocities, and Z.(t) and Z(t)
represent their vertical acceleration. In addition,
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m,, Mg, Cs, kg, and k,- define the tire mass, sprung
mass, damping coefficient, spring stiffness
coefficient, and tire stiffness coefficient,
correspondingly. Ultimately, z,,(t) indicates the
vertical displacement caused by irregularities that
can be formulated as follows.

Zw(t) — {0(.)05[sin(2nt)] if 0.5<te<l§.95 (3)
In this study, a deterministic road input defined by
Equation (3) is used to evaluate the baseline
performance of the proposed controller. Although
more realistic stochastic road profiles can be
generated based on ISO 8608 standards, they were
not considered in this initial model to isolate the
controller’s  performance under controlled
conditions. Incorporating ISO-compliant random
road excitations is proposed as a direction for
future work.

It is also worth noting that the employed quarter-
car model only captures vertical dynamics. Hence,
the effects of lateral load transfer and roll dynamics
during cornering maneuvers are not reflected in the
current formulation. Extension to a half-car or full-
vehicle model would be necessary to account for
such phenomena in future studies.

Table 1. Values of the constant coefficients for the
studied vehicle SS according to Ref. (Mahmoodabadi

and Nejadkourki 2022) .
coefficient value unit
m, 36 kg
mg 240 kg
Cs 1978 kNs/m
k, 160000 kN/m
kg 10529 kN/m
Car Body -

Suspension -

Wheel -

Tire -

L 1 Zw
Figure 1: A schematic representation of the studied
quarter-car active SS.

Table 1 tabulates the numerical values of the
constant parameters in Equations (1) and (2) and
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compares these results with those reported in Ref.
(Mahmoodabadi and Nejadkourki 2022).

3. Controller Design
3.1. Fractional-order PID Controller

The PID, as a widely known controller, is
extensively employed owing to its efficacy and
simplicity (Aessa et al. 2023). Recently, response
speed and robustness have been reported in the FO
version of this compensator (El-Rifaie et al. 2025,
Sahin et al. 2024). Some definitions of the FO
operators are described in the following (Ansarian
and Mahmoodabadi 2023).

Definition 1. Caputo fractional of A" order
derivative and integral for function k) are given
by the following equations.

1 1 t kM@

tﬁD k() = H(A-y) fto (t-1)Av+1 T @)
2 1 t k()

tﬁlt k(t) - %J‘to (t_T)l—A dT (5)

where y —1< A<y, and y represents the
smallest integer number greater than A. Further, t
and t, are the final and initial time values,
respectively reflecting the upper and lower bounds
of integration. H(.) denotes the Gamma function
written by the following equation.

Hw) = [ et t* 1dt (6)

Therefore, a common version of the FOPID
controller for a system with two errors e; and e,
can be revealed as follows.

T(t) = fipre1(t) + Fi1Ver (t) + fg1 DPeq () +
fip2e2(t) + Tliz1Vex(t) + flg2DP ey (1) (7N

where ﬁpla i1, flqr and ﬁsz Miz> Tlaz are
proportional, integral, and derivative coefficients
related to the first and second errors, respectively.
Correspondingly, DP and IV are Caputo fractional
derivative and integral of orders p and v.

3.2. Adaptive Robust Fractional-order PID
controller

When designing a controller, a key aspect is to
attain appropriate values for the control gains. For
this, adaptive methods are supposedly highly
potent to timely set these gains. Furthermore,
robust SM techniques can be utilized to modify
time-dependent relations of the adaptive approach.
Thus, integral sliding surfaces related to a system
with two errors can be calculated from the equation
below (Slotine and Li 1991).

Mahmoodabadi et al.

where e; j = 1,2 denotes the system errors based
on the system states, and ¢;j = 1,2 represent
sliding surface parameters that can be obtained
from the equation below.

where, ¢; j = 1,2 are positive constant parameters,
while ¢; j = 1,2 signify fuzzy parameters. The
time-dependent adaptive part of the proportional,
integral, and derivative coefficients can be
calculated utilizing the gradient descent technique
as follows (Astrom and Wittenmark 2008).

ﬁpj = —dijjej, ] = 1,2 (10)
Mmj = —a;s; [e;dt, j=12 (11)
- ~ dej .

faj = —@ajsj—>, J =12 (12)

where, @,;, &@;; and @,4; can be regulated by fuzzy
parameters &, ;, @;; and &g;, respectively.

&xj = &xj + Ay, J=12x=p,id (13)

where, a,;j = 1,2 and x = p, i, d denote positive
constant parameters. Ultimately, the coefficients of
the FOPID controller introduced in Equation (7)
can be clarified as follows.

flxj = Nxj +1xj J=L2andx =p,i,d(14)

where, 1y; j = 1,2 and x = p, i, d indicate positive
constant parameters..

3.3. Fuzzy adaptive robust fractional-order PID
controller

In the previous subsection, a series of parameters
arose when adapting the FOPID control gains.
Hence, one potent solution to regulate their values
based on the system conditions is to apply fuzzy
logic-based systems. As with Equations (10-12),
the sliding surfaces influence the overall behavior
of the control approach. Therefore, regulating their
parameters can affect the system’s performance.
This research employs fuzzy systems to regulate
positive control parameters ¢; (j = 1,2) and @y;
(j=12and x =p,i,d). The studied fuzzy
systems employ the product inference engine,
singleton fuzzifier, and center average defuzzifier,
which are formulated as follows (Driankov et al.
2013).

Th=1 )

fuzzy parameter = m (15)
where N; and N, are the numbers of the fuzzy rules
and equal to 3, and f*1 %2 represents the center of
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the output membership functions. Ultimately, u*
denotes the input membership function that is
pondered as a triangular shape (Figure 2).
Furthermore, the fuzzy rules related to the control
parameters are given in Table 2.

-« . €k
0

Figure 2. Triangular membership functions utilized
for the inputs of the fuzzy systems.

Table 2. Fuzzy rules for fuzzy parameters f~.

L M H

& 96.04 4998 96.04
¢, 18876 229 13.44
@, 1489 6157 2401
@, 67110 978 984

@g 5497 1520 3326
24990 1092 17767
@; 8345 2099 201.6
@z 0.099 0.014  0.093

4. Optimization by the MOMGA

Over the last decades, MH algorithms have
become popular due to their simplicity, flexibility,
derivation-free mechanism, and local optima
avoidance (Sadeghian et al. 2025). These features
qualify MH optimization approaches as potent
solves of the real-world issues, particularly
controller design problems (Zhuang et al. 2024).
David Schaffer proposed the theory of MO
optimization for problems with diverse and
potentially conflicting objectives (Schaffer and
Grefenstette 1985). Hence, a MO optimization
technique based on the material generation
algorithm (MGA) can find the optimum values of
control gains.

4.1. MGA

Inspired by the configuration of chemical
reactions and compounds in producing new
materials, the MGA offers highly competitive and
even eminent results compared to other MH
algorithms (Talatahari et al. 2021). Alike natural
evolution algorithms that build a predefined
population of solution candidates, MGA
determines a number of materials (MT), comprised
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of multiple periodic table elements (Es). A general
mathematical modeling of this algorithm is as
follows (Talatahari et al. 2021).

(E} E} - Ef . EP
E} EZ .. Eé - Eb
Mr = i 3 : (16)
1 2 b
E} E; Ej‘ e Ef
EL EN . EL ... EDb]

Ef(0) = E} i + urand(0,1) (Ef max — Ef min)
(17)

MTy.y, = [E%ew Erzlew Erslew Er?ew] (18)

Ejew = Er? £ pc (19)
1 —(x-w)?

fEewli,0?) = == e 22 (20)

where b is the dimension of the problem, m is the
total number of solution candidates, E}(0) denotes

the initial amount of the ith periodic table element
in the jth material, urand (0, 1) signifies a random
number uniformly distributed between [0,1], E}

> Hjmin
and E ji,max
maximum acceptable amounts of the ith decision
variable in the jth solution candidate,r; and 7,
correspondingly denote random integers uniformly
spread in [1,m] and [1, b], PTTZ2 (randomly chosen
from the MT, MT,.,,) represents the new generated
material, PTy,,, is the new periodic table element,
and pc is the probabilistic component regulating
the process of gaining, losing, or even sharing

electrons.

respectively indicate the minimum and

4.2. MOMGA

MGA was originally introduced to address
single-objective optimization problems and cannot
be directly used to solve MO issues. MGA, in turn,
requires three mechanisms for solving MO
optimization problems. The first mechanism is the
archive, a storage space for storing or restoring the
obtained Pareto optimal solutions. The second
effective approach to enhance non-dominated
solutions in the archive is the grid mechanism.
When the archive is full, the grid mechanism
rearranges the object space’s segmentation and
finds the most populated zone to prune it. The
leader mechanism is the last method introduced to
the MGA, which is used to compare solutions in
the MO search space. Such a selection is based on
the roulette-wheel technique with the following
probability:
T = 1)

n;
where p is a constant number higher than 1, and n;
denotes the variety of obtained Pareto optimal
solutions in the ith section (Nouhi et al. 2022). The
MOMGA flowchart is illustrated in Figure 3.
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Ultimately, the block diagram of the optimal FA
robust FOPID controller is demonstrated in Figure
4.

5. Simulation results and discussion

The MOMGA was utilized to find the best values
for control parameters, including the positive
constant parameters in Equations (9), (13), and
(14), the initial conditions for the adaptive gains in
Equations (10) through (12), the FO operators in
Equation (7), and the centers of the output
membership functions in Equation (15). The
controller optimization process was formulated as
a multi-objective problem with two primary
objectives:

(1) Minimization of the integral of absolute relative
displacement

fi = f1zs — z,| dt (22)
which reflects road holding performance, and
(2) Minimization of the integral of absolute chassis
acceleration

fo = [1z| dt (23)
which is directly related to ride comfort in
accordance  with ISO 2631  guidelines.
These two criteria represent the widely accepted
trade-off in suspension design, ensuring both
stability and passenger comfort.

@

[s termination criteria fulfilled? a

yes
Return the archive

Figure 3. Flowchart of the MOMGA.

Mahmoodabadi et al.

Fuzzy systems

outputs
—

inputs +. errors

Fractional computation

Figure 4. Block diagram of the introduced optimal
fuzzy adaptive robust fractional-order PID
controller.

T

* Pareto front by this work /
Design point in [8]

® Design point in [15]

IS}
Q9
T

N
>
T

J—

second objective (1‘2)
~
wn

N}
w
T

N}
1)
T

4.‘2 4‘.4 4.‘6 4.‘8 ; 5.‘2
first objective (fl)
Figure 5. Pareto front as well as the design points
obtained by this strategy and suggested in (Bagheri
et al. 2011, Mahmoodabadi and Nejadkourki 2022).

Figure 5 depicts the Pareto front achieved
through the optimization process and the chosen
point, and compares them with the optimum points
in (Bagheri et al. 2011, Mahmoodabadi and
Nejadkourki 2022). Ref. (Bagheri et al. 2011) has
used the MOMGA for Pareto optimization of the
two-degree-of-freedom passive linear SS regarding
these two conflicting functions. Likewise, Ref.
(Mahmoodabadi and Nejadkourki 2022) has
designed an FA robust PID controller optimized by
a single-objective PSO algorithm for the quarter-
car model with an active SS.

To fairly compare these results with those in
(Rodriguez-Guevara et al. 2023, Bagheri et al. 2011),
the values of the constant parameters for the
concerned vehicle SS are reflected based on the
data in Table 1 for all methods. Compared to the
solutions related to the designed points proposed in
(Bagheri et al. 2011, Mahmoodabadi and
Nejadkourki 2022), the chosen point from the
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Pareto front has been improved by 8% and 19% (in
the relative displacement) and by 3% and 20% (in
the chassis acceleration), respectively. Such
improvements enhance both road holding and ride
comfort, and the resulting chassis acceleration
levels fall within ISO 2631 comfort thresholds for
light vehicles. Table 3 presents the optimum values
of the defined variables, including the initial values
of the adaptive coefficients, the FO parameters, and
the constant parameters of the gradient descent
formulations. Figures 6 and 7 depict the time
responses of relative displacement and the chassis
acceleration, respectively. As shown, the proposed
approach has less relative displacement and has
been improved by 27% and 104% (in the overshoot
values) and by 5% and 45% (in the settling time
values), compared to the methods designed in
(Bagheri et al. 2011, Mahmoodabadi and
Nejadkourki 2022). Figures 8 to 11 show
displacements and velocities of the tire and chassis
for the different methods. As demonstrated, the
proposed optimal FA robust FOPID control system
takes less overshot values and more efficiently
suppresses vehicle vibrations, compared to the
control approaches in (Bagheri et al. 2011,
Mahmoodabadi and Nejadkourki 2022). The
results indicate that the proposed FA robust FOPID
controller effectively suppresses oscillations in
both sprung and unsprung masses. Although the
optimization emphasizes ride comfort, the
achieved improvements do not significantly
compromise the response time or overshoot. This
balance reflects the inherent trade-off in
suspension design and highlights the controller’s
effectiveness in tuning fractional gains adaptively.
Figure 12 shows the behaviors of the sliding
surfaces without chattering and acceptable ranges.
Ultimately, Figures 13 and 14 respectively show
variations in the fuzzy and adaptive gains related to
the proportional, integral, and derivative terms
over time. These diagrams imply the convergence
of all parameters to constant values at a reasonable
period. It should be noted that the quarter-car
model employed in this study does not capture
lateral dynamics such as roll or yaw, which are
relevant during cornering maneuvers. Therefore,
the current analysis is limited to wvertical
excitations. Future research should extend the
model to half-car or full-car configurations to
enable comprehensive validation under combined
vertical and lateral scenarios.

To evaluate the robustness of the controller against
parameter variations, a sensitivity analysis was
conducted. The sprung mass was varied within
+10% of its nominal value as reported in Table 1.
This range reflects common tolerances observed in
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practical applications and component variability.
The system’s performance under this uncertainty
illustrated in Figure 15 was used to assess the
controller’s robustness in terms of stability and
comfort.

Table 3. Optimum values of the control parameters

according to the suggested design point.

Variable Value Variable Value
c; 67626 Niz 19.95
[ 416.16 Naz 0.480
Ay 388.96 11p1(0) 3128.98
a;; 4.99 7;1(0) 3043.50
g1 125.94 741 (0) 3164.80
Ay 0.960 11p2(0) 48.99
iy 2.895 7i2(0) 503.54
Ay 9.996 M42(0) 0.007
Tp1 416.16 v 0.916
N1 496.57 p 1.163
Na1 499.80 Np2 145.65
0.08 Approach proposed by (Bagheri et al. 2011)
_ 0.06 :i:)}:::::: g;ulp;’l::ev:lol:i (Mahmoodabadi et al. 2022)
E o4
- ~»\
g 0.02 ~N VA
g_ 0
S
: 0.02 \/ Y
= -0.04
" 006
-0.08 ! ! | J
0 1 2 3 4 5 6

timé (s)

Figure 6. Time changes of the relative displacement.

Approach proposed by (Bagheri et al. 2011)
== Approach proposed by (Mahmoodabadi et al. 2022)
== Approach by this work

acceleration of chassis (m/s2)

I I I N
0 1 2 3 4 5 6
time (s)

Figure 7. Time changes of the acceleration of
chassis.
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Approach proposed by (Bagheri et al. 2011)
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Figure 12. Time variations of the sliding surfaces
for the proposed method of this work.
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6. Conclusions and Future Works

This research proposed a hybrid controller
constituting FOPID  compensators, sliding
surfaces, and fuzzy systems for an active SS.
Firstly, a PID controller improved by the FO
concepts was proposed to handle the dynamics of
the studied nonlinear active SS. Next, the sliding
surfaces were formulated based on the relative
displacement and chassis acceleration to adaptively
compute the gains of the FOPID controller. Then,
Fuzzy systems based on the center average
defuzzifier, singleton fuzzifier, and product
inference engine were used to regulate the
parameters of the sliding surfaces and gradient
descent equation. After the control system was
structurally designed, the MOMGA was run to
determine the optimal values of the constant gains,
aiming to simultaneously minimize body
acceleration and relative displacement. Simulation
results revealed the potency of the propose idea in
handling vibrations in the active SS, compared to
ot her controllers. Regarding these, future research
needs to (1) apply other novel MOMGASs to obtain
more accurate non-dominate solutions, (2) utilize
more complete models of the vibration system to
achieve more pragmatic results, and (3) employ
other fuzzy systems (e.g., Takagi-Sugeno and
fuzzy type Il systems)

to enhance the flexibility of the controller design
process.
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