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Abstract 

The lane change maneuver is among the most popular driving behaviors. It is also the basic element of 

important maneuvers like overtaking maneuver. Therefore, it is chosen as the focus of this study and novel 

multi-input multi-output adaptive neuro-fuzzy inference system models (MANFIS) are proposed for this 

behavior. These models are able to simulate and predict the future behavior of a Driver-Vehicle-Unit in the 

lane change maneuver for various time delays. To design these models, the lane change maneuvers are 

extracted from the real traffic datasets. But, before extracting these maneuvers, several conditions are 

defined which assure the extraction of only those lane change maneuvers that have a smooth and uniform 

trajectory. Using the field data, the outputs of the MANFIS models are validated and compared with the 

real traffic data. In addition, the result of these models is compared with the result of other trajectory 

models. This comparison provides a better chance to analyze the performance of these models. The 

simulation results show that these models have a very close compatibility with the field data and reflect the 

situation of the traffic flow in a more realistic way. 

Keywords: Intelligent Transportation Systems, lane change maneuver, modeling, multi-output ANFIS..

1. Introduction  

Nowadays, intelligent transportation systems 

(ITS) play an important role in transportation 

industry. The prominent aspect of these systems is 

their ability to increase safety and improve the traffic 

flow [1-2]. ITS achieves these goals by incorporating 

up-to-date information technologies of all kinds in the 

transportation field [3]. One of the concerns of ITS is 

microscopic models of traffic flow, and specially, 
models of different driving maneuvers such as car 

following and lane change behavior. In these 

maneuvers, the behavior of each driver is different 

from the behavior of others since each driver follows 

his own specific patterns during driving. Many Driver 

Assistant Systems (DAS) require a model 

representing the typical driving patterns of the target 

driver in order to cooperate in the driving behavior. 

Driver Models can be trained either in offline or 

online manners [3, 4]. Lane change models are among 

the most important microscopic traffic flow models. 
The object of these models is to obtain desired 

behavior of a Driver-Vehicle-Unit (DVU) in the lane 

change maneuver. Fig. 1 shows a typical situation of a 

lane change maneuver. When the necessity to change 

the current lane arises, the distances between the main 

vehicle and other vehicles should be checked before 

any decision making. If the distances were safe 

enough to prevent accidents, the lane change 

maneuver can get started. To perform the maneuver, 

the vehicle initiates to move to the adjacent lane. By 
starting to move to the left lane, the heading angle of 

the vehicle begins to increase until the vehicle gets to 

the middle of the left lane. At this point, the maneuver 

is completed and the vehicle can arrange to move in 

the straight path again. As a result, the heading angle 

begins to decrease [5].  

Humans play an inevitable role in the operation 

and control of human-machine systems. A Driver-

Vehicle Unit is an example of such systems. With 

advances in emerging vehicle-based ITS 

technologies, it becomes even more important to 
understand the normative behavior response of 

drivers and changes under new systems [2]. Based on 

Rasmussen’s human-machine model, shown in Fig. 2 
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Fig1. Lane change behavior [5]. 

 
 

 

 
 

 
Fig2. Rasmussen’s human-machine model [6]. 

 

 

 

[6], driver behavior can also be separated into a 

hierarchical structure with three levels: the strategic 

Tactical and operational level. At the highest level 

(strategic), goals of each driver are determined, and a 

route is planned based on these goals. The lowest 

operational level reflects the real actions of drivers, 

e.g., steering, pressing pedal, and gearing. In the 

middle level, certain maneuvers are selected to 

achieve short-term objectives, e.g., interactions with 
other road users and road infrastructures. 

 

In this paper, new multi-output ANFIS (MANFIS) 

models for lane change maneuver are proposed. 

These models are able to predict the future behavior 

of a lane change maneuver for three different delay 

times. 0.1s, 0.2s and 0.3s are these constant delay 

times 

2. Brief Review on The Lane Change Models 

To develop microscopic traffic simulation of high 

fidelity, researchers are often interested in imitating 

human’s real driving behavior at a tactical level. That 

is, without describing the detailed driver actions, 

DVUs in the simulation are modeled to replicate their 

states in reality, i.e., the profiles of vehicle position, 

velocity, acceleration, and steering angle. Fig. 3 

shows the model structure of a DVU in which the 

detailed driver actions become internal [7] 
So far, various models for lane change maneuver 

have been presented [8-9]. Seimenis and Fotiades 

presented a mathematical lane change model by using 

Clothoidal Theory and Bezier Points. In this study, 

the lane change trajectory points were approximated 

using a polynomial which was called s-series. This 

model could change curvature radius during lane 
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change path regularly using continuous monitoring of 

centrifugal acceleration through velocity control [10]. 
Hsu and Liu presented a lane change model for 

platoon maneuvers in highways. In this study, first the 

required equations to model the lane change 

maneuver were obtained using two robots, and then 

the model was generalized for the vehicle [11]. 

Toledo-Moreo and Zamora-Izquierdo presented a lane 

change prediction model for collision avoidance in 

highways using interactive multiple models (IMM) 

method. This model predicted the positioning using 

the extended Kalman filters (EKFs) that was run by 

an IMM-based algorithm [12]. Dogan et al. presented 
a neural network model for lane change maneuver. 

This model had a memory part that activations of 

neurons in each step are stored in this part for using in 

the next steps. In this model, back propagation 

algorithm was used, and the data related to real 

experiments were used for training [13]. Alonso et al. 

applied image processing method to develop a lane 

change model, based on motion-driven vehicle 

tracking and monitoring the rear view mirror of 

vehicle. In this paper, first, the optical flow in real 

time was computed using a digital signal processor 

(DSP). Then, the position of the lane change 
trajectory points were computed using a standard 

processor [14]. Ahle and Soffker presented a lane 

change model based on the relationships governing 

the parameters and situations of the operator. In this 

study, first, various situations of the vehicle and 

actions of operators (mean braking, driving and lane 

changing) were defined. Then, a lane change 

algorithm base on situation-operator mode1 (SOM) 

was presented [15]. Liu et al. applied Parallel 

Bayesian Networks (PBN) to develop a lane change 

model. The basic operation of this model was the 
analysis of the steering angles and their difference 

[16]. The final status of driver behavior was 

determined using the largest probability of each status 

during the lane change. Then, the presented model 

was compared by Gussian Bayesian Network (GBN). 

GBN is a method for estimation of the driver's 
behavior state using steering angle in one period. 

Comparing these models showed that the PBN model 

had less error and can decrease response time of the 

behavior state judgment during lane change [17]. 

Wakasugi presented a model to alarm the appropriate 

time for lane change, based on the relationship 

between lane-change tasks and closing vehicles in the 

passing lane. In this paper, simulation was done by a 

linear prediction model, using the data related to real 

experiments [18]. Shamir offered an optimal lane-

change trajectory to be used under normal conditions 
for overtaking maneuvers. To suggest a trajectory for 

a lane change, he considered phase 3 of an overtaking 

lane for convenience. To determine the trajectory for 

lane change maneuver, a polynomial expression was 

fitted for x(t) and y(t). By writing down a general 

fifth-degree polynomial, the equations for coordinate 

x and y of the trajectory were obtained [19]. 

As mentioned above, various studies have been 

done on lane changing models. In this study, a new 

model will be proposed which improve different 

aspects of the available models. Artificial neural 

networks are favorable tools providing the possibility 
of exploiting real observed data while developing the 

models. In addition, fuzzy logic can be a potential 

method to deal with structural and parametric 

uncertainties for non-linear behaviors. Neuro-fuzzy 

models, such as ANFIS, are combinations of artificial 

neural networks and fuzzy inference systems, 

therefore these models have advantages of both 

methods. Integration of human expert knowledge 

expressed by linguistic variables, and learning based 

on the data are powerful tools enabling neuro-fuzzy 

models to deal with uncertainties and inaccuracies 
[20]. Since lane change is a highly non-linear 

behavior, ANFIS is a powerful tool to model the lane 

change maneuver. In the next part, the design of the 

ANFIS lane change model is described 
 

 

Fig3. Structure of a DVU model [2].

3. ANFIS Lane Change  Models Design 
Since ANFIS is the basis of this design, this 

section starts with a brief review on ANFIS and then 
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multi-output ANFIS (MANFIS) structure is 

expressed. Next, the database used for the design of 
the model is explained briefly. In order to have a 

smooth lane change trajectory, some conditions are 

defined and the lane change data are extracted 

according to these conditions. At the end of this 

section, the structure of the models is described. 

 

A. ANFIS Architecture 

 
Since in this research, ANIS type-3 is used to 

model the lane change behavior, the ANFIS structure 

is briefly explained in this section. Detailed 
information about ANFIS is available in [21]. ANFIS 

is a system which has the ability to make human-like 

decisions. Since ANFIS structure is composed of the 

combination of neural network and fuzzy logic, using 

ANFIS for non-liner systems will have appropriate 

result [22]. The if–then fuzzy rules that are used in 

ANFIS are Takagi-Sugeno’s type, and a recursive 

least square (RLS) is the basis of learning procedure. 

ANFIS architecture (type-3 ANFIS) is shown in Fig. 

4. The structure is composed of 5 layers, that each 

layer has one or several nodes. There are two types of 

nodes: square node (adaptive node) and circle node 
(fixed node) [23].  

In these equations x and y are inputs to node i, and ia ,
ib  and ic  are parameters of the membership 

functions, and ip
, iq

 and ir  are parameters set of the 

fuzzy rules. (Defining 
( )

iB yµ
is similar to the 

process of defining 
( )

iA xµ
 . The only difference is 

that y is used instead of x). 

 

Fig4. ANFIS architecture (type-3 ANFIS) [23]. 

 

ANFIS has a major constraint which is its single 

output structure. To solve this problem, multi-output 

model can be made by connecting several single 

output models. In other words, putting as many 
ANFIS models side by side, as there are required 

outputs is an approach of having multiple outputs. 

The architecture of a two-output MANFIS model is 

shown in Fig. 5 [24]. 

 Besides the advantages of ANFIS, MANFIS has 

several other privileges. MANFIS needs fewer 

numbers of training to get the same error of single 

ANFIS. Therefore, faster and simpler results can be 

obtained based on MANFIS. In this study, MANFIS 

is used to effectively predict the future behavior of a 

lane change maneuver [25]. 

 

B. Datasets 

 
Real overtaking data from US Federal Highway 

Administration’s NGSIM dataset is used to train the 

MANFIS prediction models [26]. The NGSIM 

datasets represent the most detailed and accurate field 

data collected to date for traffic micro simulation 

research and development. In June 2005, a dataset of 

trajectory data of vehicles travelling during the 

The first layer is consisted of square nodes, and 
the value of the input membership functions 

 ( ( )
iA xµ ) are computed in this layer. Usually we 

choose ( )
iA xµ  to be bell-shaped such as equations 

(1) and (2). The second layer is made of circle 

nodes. Output of each node in this layer represents 

the firing strength of a rule ( iw ). This value is 
computed by equation (3). The third layer is made 

of circle nodes. In this layer, the ratio of the each 

rule's firing strength to the sum of all rules firing 

strengths ( iw ) is computed through equation (4). 

The fourth layer is consisted of square nodes, and 
executes the part of fuzzy rules by equation (5). 

Finally the single node in the fifth layer, which is a 

circle node, computes the output system using the 

summation of all incoming signals and is 

calculated by equation (6). 
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morning peak period on a segment of Interstate 101 

highway in Emeryville (San Francisco), California 
has been made using eight cameras on top of the 

154m tall 10 Universal City Plaza next to the 

Hollywood Freeway US-101. On a road section of 

640m, 6101 vehicle trajectories have been recorded in 

three consecutive 15-minute intervals. This dataset 

has been published as the US-101 Dataset. The 

dataset consists of detailed vehicle trajectory data on 

a merge section of eastbound US-101, as shown in 

Fig. 6. The data is collected in 0.1 second intervals. 

Any measured sample in this dataset has 18 features 

of each driver-vehicle unit in any sample time, such 
as longitudinal and lateral position, velocity, 

acceleration, time, number of road, vehicle class, 

front vehicle and etc [27]. 

The other dataset was published as the I-80 

Dataset. Researchers for the NGSIM program 

collected detailed vehicle trajectory data on eastbound 

I-80 in the San Francisco Bay area in Emeryville, CA, 

as shown in Fig. 7, on April 13, 2005. The study area 
was approximately 500 meters (1,640 feet) in length 

and consisted of six freeway lanes, including a high-

occupancy vehicle (HOV) lane. An onramp also was 

located within the study area. Seven synchronized 

digital video cameras, mounted from the top of a 30-

story building adjacent to the freeway, recorded 

vehicles passing through the study area. This vehicle 

trajectory data provided the precise location of each 

vehicle within the study area every one-tenth of a 

second, resulting in detailed lane positions and 

locations relative to other vehicles. A total of 45 
minutes of data are available in the full dataset, 

segmented into three 15-minute periods. These 

periods represent the buildup of congestion, or the 

transition between uncongested and congested 

conditions, and full congestion during the peak period 

[28].

 

 
 

Fig5. A two-output MANFIS structure [24] 

 

 

 

Fig6. A segment of Interstate 101 highway in Emeryville, San Francisco, California [27] 
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Fig7. A segment of eastbound I-80 in the San Francisco Bay area in Emeryville, California [28]. 

  

(a) (b) 

Fig8. . Comparison of filtered and unfiltered data: (a) acceleration, (b) heading angle. 

 
 

The data extracted from the datasets, seem to be 

unfiltered and exhibit some noise artifacts, so these 

data must be filtered like [29, 30]. A moving average 

filter has been designed and applied to all data before 

any further data analysis. Comparison of the 

unfiltered and filtered data of the acceleration and 

heading angle of the overtaking vehicle are shown in 

Fig. 8. 

C. .Data Extraction Conditions 
 

In general, there is no certain rule to determine an 
appropriate lane change maneuver from others. Here, 

some innovative conditions are determined to help 

extract the lane change behaviors which have an 

appropriate trajectory. These conditions are obtained 

by analyzing the data related to a DVU behavior in 

the lane change maneuver. These conditions must be 

satisfied to provide the safety and convenience of the 

vehicle's passengers and the vehicle will have a 

smooth and uniform trajectory [5]. These conditions 

are explained here. 

In order to create a symmetric path for lane 

change, the vehicle must have passed half of the 

width and length of the lane change path when half of 

the time of the maneuver is passed. 

Although there is no rule to determine a maximum 

limit for the heading angle of the vehicle's movement, 
in order to have an appropriate trajectory, it is better 

to determine such a limit for the maximum heading 

angle during the lane change maneuver. 
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Another necessary condition to have a symmetric 

trajectory is that the sign of heading angle changes 
only one time in the whole path. 

Another condition is that the heading angle does 

not have sudden changes. Notice that the heading 

angle does not necessarily changes in all the time 

steps of the maneuver.  

Investigating the data of the appropriate 

maneuvers shows that the major changes of the 

heading angle occur at the initial and final time steps 

of the lane change maneuver. Knowing the maximum 

value of the heading angle ( MAXϕ
), the maximum 

changes of the heading angle at each time step can be 

determined through equation (7). 

 

The next step is to decrease the chance of the 

vehicle's slip during the lane change maneuver. To do 

this, first, the free diagram of the vehicle is drawn 

simply.  

This diagram is shown in Fig. 9. Using the 

Newton's equations, as shown in equations (8) and 

(9), F1 and F2 are obtained by solving the equations 

(10) and (11). 

 

where m is the mass of vehicle, I is the inertia 

moment, c and b are the distances from the center of 

mass to the front and rear tires, M is the torque of the 

vehicle, a and v are the vehicle's acceleration and 

velocity, F1 and F2  are the lateral forces of the front 

and rear tires, and R is the radius of the curve of the 

path.  

So the maximum limit of F1 and F2  are 

calculated using equations (12) and (13) by exerting a 

safety coefficient (fn) to cover the imperfection 
resulted by approximation. 

 

Which, 
 

 

Where s1 and s2 are fractions of vehicle weight on 

the front and rear tires, g is the acceleration of gravity 

and µ is the friction coefficient between tiers and the 

ground. 

In this stage, if F1 and F2 are less than their 

maximum values, then the velocity and acceleration 

of the vehicle has the appropriate value for the vehicle 

not to slip. But if F1 or F2 has a velue more than its 

maximum one, this condition cannot be satisfied.  

The last condition for data separation is about the 
changes that velocity and acceleration have during the 

maneuver. Since velocity is a function of acceleration, 

and the changes of acceleration determines the value 

of the changes of velocity, it is enough to determine a 

condition for the rhythm of acceleration changes so 

that it does not cause sudden movements.  

A desired lane change maneuver, is a maneuver 

which satisfies all the above conditions.  

 

An example of a desired lane change trajectory is 

shown in Fig .10. As it is shown, the trajectory is 
smooth and doesn’t have a sudden change. 

 

 

 
 
Fig9. Free diagram of the vehicle in the lane change path [5]. 

 

D. Structure of the Models 

After extracting the desired lane change data, 

MANFIS models are designed to predict the 
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acceleration and heading angle of the vehicle which 

performs a lane change maneuver. From the extracted 
data, 75% of the lane change maneuvers are randomly 

selected to train the model.   

The remaining data is set aside for model 

validation. In this study, three MANFIS models are 

designed to redict the future behavior of a lane change 

maneuver. Each of these models has five inputs and 

two outputs.  

The inputs and outputs for all of the models are 

the same. Inputs of these models are velocity, 

acceleration, jerk, heading angle and heading angle 

rate, and outputs of these models are the acceleration 
and heading angle. The structure of all three models is 

similar. 

 Fig. 11 shows the structure of the MANFIS 

models. Hybrid algorithm was used to train these 

models. Each of these models have 162 fuzzy if–then 

rules of Takagi-Sugeno’s type [31], and each input 

has three triangular membership functions. 

 

 

 
Fig10. Sample of a desired lane change path 

 

 

 
 

 
Fig11. Structure of all three MANFIS models. 

 

4. Discussion and Results 

In this section, in order to validate the 

performance of the MANFIS models, the behavior of 

several test vehicles is investigated. In Fig. 12 and 

Fig. 13, the acceleration and heading angle resulted 

by the three MANFIS models are compared with the 

real data of the first test sample vehicle (LC1). As it is 

obvious, in part (a) of the figures, which is for the 

model with 0.1s delay, the results of the models have 

a very close compatibility with the real data. As the 

delay time increases, as shown in part (b) and (c), the 

error increases for both model outputs. 
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To examine the performance of the developed 

models, various criteria are used to calculate error 
values. Root mean square error (RMSE) criterion, 

according to equation (15), is one of the well-known 

standard errors, and is used as a criterion to compare 

error aspects in various models. Mean Absolute Error 

(MAE), according to equation (16), shows how much 

the predicted results conform to reality [32]. As it is 

clear from its name, this value is a mean absolute 

error. 

Normalized mean square error (NMSE), according 

to equation (17), is a method to calculate a standard 

error in estimating methods that shows the normal 
difference of real data from the estimated data. 

 

Where, N is the number of test observation, xi 

shows the real value of the variable being modeled 

(observed data), ,-. shows the real value of variable 

modeled by the model, and ,̅  is the real mean value 

of the variable. Errors in modeling the acceleration 

and heading angle for all the three MANFIS models, 

 

 

 

 
 

   

(a) (b) (c) 
Fig12. Acceleration outputs of the three MANFIS models for the first test sample vehicle (LC1): (a) 0.1s delay time, (b) 0.2s delay time, 

(c) 0.3s delay time. 

   

Fig13. The heading angle output of the three MANFIS models for the first test sample vehicle (LC1): (a) 0.1s delay time, (b) 0.2s delay 

time, (c) 0.3s delay time. 
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Table I. Result of Error for MANFIS Models: Acceleration 

Model Test vehicle RMSE MAE NMSE 

0.1s delay time 

LC2 0.0842 0.0565 0.0344 

LC3 0.1686 0.1126 0.1239 

LC4 0.1131 0.0773 0.0673 

0.2s delay time 

LC2 0.2977 0.1583 0.1793 

LC3 0.3381 0.2404 0.2543 

LC4 0.2489 0.1775 0.2206 

0.3s delay time 

LC2 0.4535 0.2529 0.3084 

LC3 0.4973 0.3730 0.3559 

LC4 0.3549 0.2317 0.2879 

 
Table 2.Result of Error for MANFIS Models: Heading Angle. 

Model Test vehicle RMSE MAE NMSE 

0.1s delay time 

LC2 0.1091 0.0701 0.0103 

LC3 0.1782 0.1080 0.0126 

LC4 0.2597 0.1288 0.0522 

0.2s delay time 

LC2 0.2171 0.1537 0.0322 

LC3 0.4916 0.2891 0.0748 

LC4 0.3630 0.2358 0.0716 

0.3s delay time 

LC2 0.2453 0.1763 0.0353 

LC3 0.3474 0.2211 0.0464 

LC4 0.6922 0.4859 0.1721 

 

 
Fig14. Comparison of the trajectory of the three MANFIS models with real trajectory for the first test vehicle (LC1): (a) model by 0.1s 

delay time, (b) model by 0.2s delay time, (c) model by 0.3s delay time. 

 

Considering these criteria are summarized in 

Table I and Table II. The results for only three test 

vehicles are shown in these tables. 

Using the acceleration and heading angle resulted 

by the models, the coordinates of the trajectory for 

each test vehicle can be calculated. This trajectory can 

be compared by the real trajectory. In Fig. 14, the real 

trajectory and the trajectory resulted from the models 

are shown for the first test vehicle (LC1). 

To examine the performance of the developed 

models, various error criteria are used. But since the 

total time of the trajectory of the optimal model is not 
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equal to the time in real trajectory data, it is not 

possible to calculate these criteria for this model. So, 
the results of these criteria are only calculated for the 

MANFIS model.  

The absolute horizontal transport deviation 

(AHTD), according to equation (18), shows the mean 

deviation between a modeled trajectory and the 

corresponding true trajectory. The trajectory based on 

field data is considered as true trajectory. Another 

useful statistical concept is the mean relative 

horizontal deviation (RHTD), according to equation 

(20).  

This is defined as the ratio between the absolute 
transport deviation and the mean total travel distance 

of the true trajectory (L5(t)), according to equation 

(12). 

 In these equations, X7(t) and x7(t), respectively, 

show the real and model value of the coordinate x. In 

addition, Y7(t) and y7(t) show the real and model 

value of the coordinate y. N is the number of test 

observations at travel time t [33, 34]. 

 

( ) 100
( )

H

AHTD
RHTD t

L t
= ×

                              (19) 

Errors between the real trajectory and the 

trajectory resulted by the three models, considering 

these criteria are summarized in Table 3. 

In this section, the lane change trajectory of the 

first MANFIS model will be compared with the 
trajectory of the optimal trajectory model presented 

by Shamir in 2004 [19]. In the optimal trajectory 

model, Shamir assumed that the lateral displacement 

is always equal to the width of the lane (W). Notice 

that the MANFIS model and the optimal model 

present the lateral and longitudinal coordinates with 

unlike parameters. In the MANFIS model, lateral 

coordinate is shown by x and the longitudinal 

coordinate is shown by y. But in the optimal model, 

the names of the parameters are vice versa. For the 

same test vehicle, the optimal trajectory model offers 
the trajectory shown in Fig. 15 (a). 

 
Table 3. Trajectories error for three examined samples. 

Model 
Error 

Criteria 
LC1 LC2 LC3 

0.1s delay time 
AHTD 0.0098 0.0109 0.0811 

RHTD 0.0224 0.0378 0.2377 

0.2s delay time 
AHTD 0.0691 0.0359 0.0470 

RHTD 0.1585 0.1245 0.1381 

0.3s delay time 
AHTD 0.0300 0.0330 0.0462 

RHTD 0.0705 0.1194 0.1420 

 
 

One disadvantage of the optimal model is that the 

lateral distance traveled is always equal to the width 
of the road (W). But in reality, it does not happen as 

ideal as the optimal model shows. Therefore, the 

trajectory of the first phase always starts from a point 

with negative coordinate x. All the trajectories 

resulted by this model have this property. Because of 

this property, the start and final points of the 

trajectory are not even close to reality. In addition, the 

optimal model is not able to predict the trajectory for 

test vehicles with negative or zero acceleration, but 

the MANFIS model is completely capable of 

predicting the trajectory for different values of the 
acceleration. Also, for cases with positive 

acceleration, the model does not have a proper result 

when the value of the acceleration increases. An 

example of this case is shown in Fig. 15 (b). In these 

situations, the trajectory for the lane change phases of 

the maneuver will not be a smooth trajectory 

anymore. Another problem is that in the optimal 

model, the total time of the maneuver is not equal to 

the time spent in reality. One more disadvantage is 

about the total distance traveled during the maneuver. 

The optimal model isn’t able to predict the total 

distance correctly. So, in some cases the distance is 

more than the real distance, and sometimes it is less. 
Here, in order to have a better comparison between 

the trajectories of the two models, the trajectory of the 

optimal model is rotated. Then, it is shifted to the start 

point of the real trajectory. After rotation, in both 

trajectories, the horizontal axis shows the lateral 

displacement, and the vertical axis shows the 

longitudinal displacement. The comparison of the 

output of the two models with real data for the first 

test vehicle is shown in Fig. 16 (a). Also, in Fig .16 

[ ] [ ]
12 2

2

1

1
( ) { ( ) ( ) ( ) ( ) }

N

n n n n

n

AHTD t X t x t Y t y t
N =

= − + −∑
  (18)
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(b), lane change trajectory of the MANFIS model and 

optimal model are compared with lane change 
trajectory of the real data for the second sample 

(LC2). For this case, the acceleration of the test 

vehicle was more than the previous case. As it is 

shown, the trajectory of the lane change phases is not 
a uniform trajectory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

 

(b) 

Fig15. . The optimal trajectory model: (a) Sample of a smooth trajectory, (b) Sample of an undesired trajectory. 
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5. Conclusion 

In this study, three MANFIS models have been 

presented for the prediction of the vehicle which 

performs a lane change maneuver. These models have 

been designed to predict the lane change parameters 

with 0.1s, 0.2s and 0.3s delay times, respectively. The 

inputs of these MANFIS models were velocity, 
acceleration, jerk, heading angle, and heading angle 

rate, and its outputs were acceleration and healing 

angle. Since DVU behavior data have been used in 

the designing MANFIS models, the obtained results 

are very close to what happens in reality. To design 

these models, a wide range of the data of the lane 

change maneuvers is used and in order to decrease the 

noise and artifacts of the data, they are filtered with 

the moving average filter. Also, in order to increase 

the safety and comfort of the passengers, using the 

defined conditions, appropriate data for modeling are 

extracted from the NGSIM datasets. The testing 
results show that MANFIS models have low error and 

high precision and can predict the lane change 

trajectory with high accordance with the actual lane 

change trajectory. But by increasing the delay time, 

the models precision decreases. So, the first model 

can predict the lane change maneuver with higher 

precision in comparison with the second and third 

models, and consequently, the precision of the second 

model is more than the precision of the third model. 

Also, the performance of the first model was 

compared with the result of the optimal trajectory 
model presented by Shamir in 2004. Comparison 

shows that the optimal trajectory model does not offer 

a proper trajectory, but the MANFIS model is very 

accordant with the real data. As a whole, the error 
tables and the figures show that these MANFIS 

models have a strong capability with real data in 

comparison with other presented models. 
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