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Abstract

A boundary element method is developed for time-harmonic analysis of a finite two-dimensional structure in 

dynamic coupled thermoelasticity. The advantage of the proposed technique is although it assumes a 

harmonic excitation, domain discretization is not required and a single region analysis can be done. The 

boundary integral equations of displacement and temperature fields are considered and a single thermal 
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excitation is used to derive the boundary element equilibrium equations. Comparison is made and the 

coupling effect in natural frequencies, resonance amplitudes and temperature distribution is investigated.
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1. Introduction

Thermodynamic laws predict the strain rate variations in a solid body to be accompanied by temperature 

variations which, in turn, cause heat flows. The latter gives rise to entropy and, consequently, to dissipation 

of vibrational energy. The process, commonly referred to as “thermoelastic damping”, is contained in the 

coupled system of differential equations that describes the deformation and heat flow in a continuum. When 

a material body is subjected to an external disturbance it transmits mechanical waves. For example, 

sudden heat deposition in a solid body will create a mechanical wave through thermal expansion.

If the heat deposition occurrence is within a short time span, it creates thermal stress waves and 

consequently the coupled equations of thermoelasticity and energy must be considered simultaneously. 

The classical coupled equations can be described either in time or frequency domains. Although there are 

many papers dealing with coupled thermoelasticity problems in time domain, seldom is the problem 

discussed in the frequency domain.

The study of the time-harmonic problem is one of the most extensive and productive areas of continuum 

dynamics. Time-harmonic problems are those in which all the time-dependent variables vary with time as 

 or , ω being the angular frequency. Using complex notation, the time dependence is 

written as  or .

There are several reasons why the study of time-harmonic problems is important and productive. First, the 

solution to the governing equations are very much simplified in this case. The Navier equations are 

simplified to equations containing only space derivatives. The convolution products in the reciprocal 

theorem and integral representation become simple dot products for this case. The simplification of the 

equations allows for the analytical solution of some basic problems which cannot be solved for other time 

dependencies. A second reason for the importance of harmonic problems is that elastic regions, and in 

general regions governed by the wave equation, under homogeneous boundary conditions, oscillate 

harmonically with natural frequencies of the system which are an infinite sequence. Finally, a third reason is 

based on the fact that harmonic functions constitute a complete class of independent functions. Information 

concerning classical dynamic thermoelasticity can be found in the work of Biot [1], Chadwick [2], and 

Nowacki [3].

The dynamic propagation of plane waves in coupled thermoelastic solids has been studied by several 

authors. Nayfeh and Nemat-Nasser [4] studied the effects of the thermal coupling on both plane harmonic 
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(1)

(2)

(3)

thermoelastic waves in unbounded media, and Rayliegh's surface waves propagation along the free 

surface of a half-space. Later, Puri [5], obtained exact solutions to the frequency equation, and calculated 

exact values for the real and imaginary parts of the wave number. Agarwal [6] determined phase velocity, 

attenuation coefficient, and amplitude ratio behavior for quasi-elastic and quasi-thermal modes by directly 

solving the frequency equation. All of the above-mentioned studies are in an infinite domain.

Time-domain boundary element method (BEM) to quasi-static thermoelastic problems were first provided 

by Dargush and Banerjee [7] and [8] . In the realm of classical dynamic thermoelasticity, the well-known 

fundamental solution in the transform domain by Nowaki [9] and the reciprocal theorem by Ionescu-Cazimir 

[10] have been available for a long time. On the other hand, several authors [11] have written various forms 

of fundamental solution and integral representation for the classical theory, but no BEM application has 

been reported to verify the validity of these formulations. Furthermore, nothing has appeared concerning 

time-harmonic coupled thermoelasticity in a finite domain.

It is possible to establish an analogy between poroelasticity and thermoelasticity design for a time-harmonic 

regime, as pointed out by Bonnet and Boutin [12]. They have shown that only solid displacements and fluid 

pressure or temperature are independent variables for poroelastic or thermoelastic problems. More 

recently, Cheng and Badmus [13] and Dominguez [14] developed frequency domain BEMs for dynamic 

poroelasticity in terms of independent variables. Both papers contain numerical implementations and 

applications, which are limited in scope to two-dimensional time- harmonic problems. Wagner [15] 

presented the fundamental matrix of the system of coupled thermoelasticity in one-dimension and obtained 

some results about coupling effects on temperature and displacement distribution.

In this paper, the boundary element formulation for time-harmonic dynamic coupled thermoelasticity 

problems in a two-dimensional finite domain is presented. A single heat excitation is used to drive the 

boundary element formulations. The influence of coupling parameter in natural frequencies, temperature 

and displacement distribution is discussed. Amplitude versus frequency in resonance condition for various 

coupling parameters is investigated and new information is derived from the so-called chart and graphs. 

Throughout this paper, the summation convention on repeated indices is used. A dot indicate time 

differentiation and the subscript i after a comma is partial differentiation with respect to xi (i=1,2).

2. Governing equations

A homogeneous isotropic thermoelastic solid is considered. In the absence of body forces and heat flux, 

the governing equations for the dynamic coupled thermoelasticity in the time domain can be written, in 

accordance with Kupradze et al. [16], as follows:

where λ, µ, ui, ρ, T, T0, k, γ and ce are Lame's constant, the components of displacement vector, density, 

absolute temperature, reference temperature, conductivity, stress–temperature modulus and specific heat 

respectively. It is convenient to introduce the usual dimensionless variables as follows:
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(4)

(5)

(6)

(7)

(8)

(9)

(10)

where α=k/ρceC1 is the dimensionless unit length and  is the velocity of the 

longitudinal wave.

(1) and (2)take the form (dropping the hat for convenience):

Transferring (4) and (5)to frequency domain yields

(6) and (7)are rewritten in matrix form as

For a two-dimensional domain the operator Lij reduces to

where Di=∂/∂xi (i=1,2) and ∆ denotes the Laplacian. The boundary conditions are assumed to be as follows:

where

3. Boundary integral equation
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(11)

(12)

(13)

(14)

(15)

(16)

(17)

In order to drive the boundary integral problem, we start with the following weak formulation of the 

differential equation set in Eq. (8)for the fundamental solution tensor :

After integrating by parts over the domain and taking a limiting procedure approaching the internal source 

point to the boundary point, we can obtain the following boundary integral equation:

where Uα=uα (α=1,2) and U3=T and Ckj denotes the shape coefficient tensor. The kernel  in Eq. (12)is 

defined by

Here the fundamental solution tensor Vjk must be determined as the tensor which satisfies the differential 

equation

Where lij is the adjoint operator of Lij in Eq. (8)and given by

4. Fundamental solution

In order to construct the fundamental solution we put the fundamental solution tensor  of Eq. (14)in the 

following potential representation by using the transposed co-factor operator µij of lij and scalar function 

[17]:

After substitution of Eq. (15)into Eq. (14), we can get the following differential equations:

where
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(18)

(19)

(20)

(21)

(22)

and h2
i are solutions of

where h1 is the longitudinal wave velocity, h2 is the thermal wave velocity, and h3 is the rotational wave 

velocity and

The fundamental solution tensor  for the two-dimensional domain is found as follows:

where

and

5. Numerical examples

The two-dimensional vibration of square cantilever plate has been studied by Gupta [18]. He considered the 

plane stress condition, and with a very fine finite element mesh obtained a very accurate solution. This 

“accurate solution” has been used by Cook and Avrashi [19] and Zhao and Steven [20] to assess the 

accuracy of different alternative solutions for the same problem. For this reason, it seems reasonable that 
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the in-plane vibration of a square cantilever plate under the plane stress condition should serve as a 

standard problem, against which any new solution technique can be examined.

As shown in Fig. 1, a square cantilever plate subjected to an oscillation temperature  at a 

fixed edge is considered. The length and width are equal to 2 (non-dimensional), Poisson's ratio is equal to 

0.3 and the plate is thermally isolated at three other edges.

 

Full-size image (1K)

Fig. 1. 

BEM model of a square cantilever plate.

Table 1 shows a comparison between the exact solution and the BEM solution with different coupling 

parameters for the natural frequency of the vibration of the square cantilever plate at point (A).

Table 1. Comparison between exact natural frequency normalized by first natural frequency of free 

vibration and numerical BEM solutions with different coupling parameter

Exact solution C=0 C=0.45 C=1

1. 0.975 0.983 0.989

1.770 1.845 1.885 1.905

2.032 1.927 1.930 1.934

Fig. 2 shows the distribution of the absolute vibration's amplitudes along the X-direction at point (A) versus 

the normalized frequency ratio, W1 being the first natural frequency of free vibration. In this figure the effect 

of the coupling parameter on the resonance frequencies and amplitudes is shown. The first three 

resonance frequencies are detected in the figure. The first one is around W/W1=0.975, the second is 

around W/W1=1.845, and the third one is around W/W1=1.927. However, the third resonance is not very 

clear from Fig. 2; Fig. 3 is the scale-up around the second and third natural frequencies. Since the 

excitement of higher modes requires larger input energy, the third mode amplitude for this problem is small. 

Table 1, Fig. 2 and Fig. 3 show that the coupling term has a different effect on different modes. It seems 

that the coupling term has a similar effect on the first and third modes, whereas it differs for the second 

mode. At the first and third modes, where  is positive at point (A), the increase of the coupling 

parameter causes a decrease of temperature distribution. The decreased temperature causes smaller 

thermal damping in the system and the natural frequencies approach the case of free vibration, while the 

related amplitudes increase. At the second natural frequency, where  is negative at point (A), the 

increase of the coupling parameter causes an increase of temperature distribution. Consequently, the 

system becomes more resistant to compression and deviates from the case of the free vibration. The 

vibration amplitude in this case decreases.
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Full-size image (6K)

Fig. 2. 

Coupling effect on resonance frequencies and amplitude.

 

Full-size image (5K)

Fig. 3. 

Coupling effect on resonance amplitude in second and third natural frequencies.

Fig. 4Fig. 5 show the temperature distribution along the axis of symmetry (X-axis) for different coupling 

parameters for specified W/W1. Around the first mode, where W/W1=1.2, Fig. 4 shows that the increase of 

the coupling parameter has a decreasing effect on the temperature distribution. At higher modes, as shown 

in Fig. 5 for W/W1=3.6, the coupling effect may have different effects on the temperature distribution, 

depending upon the mode shapes.

 

Full-size image (5K)

Fig. 4. 

Coupling effect on temperature distribution along the axes of symmetry of a plate.

 

Full-size image (5K)

Fig. 5. 
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Coupling effect on temperature distribution along the axes of symmetry of a plate.

6. Conclusions

A BEM is developed for time-harmonic analysis of a finite two-dimensional structure in dynamic coupled 

thermoelasticity. The advantage of the proposed technique assumes a harmonic excitation, domain 

discretization is not required and a single region analysis can be done. The boundary integral equations of 

displacement and temperature fields are considered and a single thermal excitation is used to derive the 

boundary element equilibrium equations. A comparison is made and the coupling effect in the natural 

frequencies, resonance amplitudes and temperature distribution is investigated.
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