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Abstract

Two dimensional harmonic response of lined circular tunnels in elastic full space medium against plane P–SV waves is investigated.
The solution uses hybrid boundary, and finite element methods for modelling of media and lining, respectively. In the proposed ring
element used in modelling of lining, the radial and tangential deformations are defined by Fourier series expansion. Therefore, the direct
finite element unknowns of the problem are introduced as coefficients of these series. The non-dimensional shear and hoop stresses in the
lining, and the same parameters in its interface with surrounding media are presented.
� 2005 Published by Elsevier Ltd.
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1. Introduction

The internal forces and stress concentration in lining of
tunnels due to earthquake waves are considered to be
important design parameters. It is believed that these struc-
tures experience a lower rate of damage comparing to sur-
face structures. However, failure of several underground
structures during recent earthquakes proposes a deeper
consideration in detail design of these structures. Among
various phenomena happening to the lining of tunnels by
earthquake waves, the distortion of cross section or oval-
ization phenomenon has the major effect (St. John and
Zahara, 1987; Wang, 1993; Kim and Konagai, 2000; Has-
hash et al., 2001). Ovaling or racking deformation in a tun-
nel structure is developed when shear and pressure waves
propagates normal, or near to normal, to the tunnel axis
and results in distortion of cross sectional shape of tunnel
lining. In addition, as far as the internal forces in lining
are concerned, the lower modes of ovalization have the
most participation in the lining deformations. Referring
to the available solutions in the literature, expanding the
ovalization modes in Fourier series, choosing the proper
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terms as are shown in Fig. 1, and considering the series�
coefficients as variational constants in functional formula-
tion, is properly used where the effect of cross sectional
deformations are to be considered in pipe and elbow ele-
ments (Bathe et al., 1980,1982,1983).

From other point of view, where the wave propagation
through the cavities is concerned, there are three major
methods for analysis of the wave scattering. Method of
wave function expansion, method of integral equation,
and method of integral transforms (Pao and Maw, 1973).

Baron and Matthews (1961) investigated the diffraction
of pressure wave by cylindrical cavity in an elastic medium
using integral transform technique.

Pao and Maw (1973) studied wave diffraction around a
cylindrical cavity in an infinite medium using wave func-
tion expansion. Lee (1977) used complex variable solution
for incident SH wave to cylindrical cavity. In the other
study, Achenbach and Kitiahara (1986) studied the reflec-
tion and transmission of an obliquely incident plane wave
by array of spherical cavities by superposition of an infinite
number of wave modes. Karl and Lee (1991) used a general
method for study of SH wave scattering by underground
cylindrical cavity. Deformation near circular underground
cavity subjected to P wave was investigated in the form of
Fourier Bessel series by Lee and Karl (1993). Other studies

mailto:moresm76@yahoo.com
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Fig. 1. Ovaling of circular tunnel due to seismic wave motion.
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in similar manner had been done by Lee and Cao (1989)
and Cao and Lee (1990) and Lee and Karl (1992) in two
dimensional study of plane elastic waves scattering.

In the case of lined tunnel or embedded pipelines, the
number of problems of wave diffraction under condition
of plane strain has been solved using analytical and numer-
ical methods such as FEM, BEM or FEM/BEM.

Lee and Trifunace (1979) obtained an analytical solu-
tion for response of underground circular tunnel to inci-
dent SH-waves. In plane strain condition, EL-Akily and
Datta (1980, 1981) presented two methods of mach asymp-
totic expansion and successive reflection for steady-state
response of circular cylindrical shell in half space. Hwang
and Lysmer (1981) used a special FEM in frequency
domain for dynamic analysis of buried structures to plane
travelling wave. Datta and Shah (1982) have undertaken a
study on wave scattering around single or multiple cavities.
Shah et al. (1982, 1983) have presented two-dimensional
results for wave scattering by single and multiple scatterers.

Wong et al. (1985) used a hybrid finite element method
and wave function expansions to study scattering at an
inclusion. Kontoni et al. (1987) and Luco and De Barros
(1994) have presented additional results for SH, P, SV
and Rayleigh waves and conducted a detailed comparative
study with previous two-dimensional solutions. Khair et al.
(1989) and Liu et al. (1991) describe a frequency domain
FEM/BEM in conjunction with a half space Green�s func-
tion and Zhang and Chopa (1991a,b,c) explain a direct fre-
quency domain BEM in conjunction with the full space
Green�s function for seismic analysis of tunnels. Stamos
and Beskos (1996) have used BEM for study of 3D seismic
response of long lined tunnels in half-space. Moore and
Guan (1996) investigated the three-dimensional response
of a pair of lined cylindrical cavities located in full-space
subject to incident seismic waves by method of successive
reflections and transforming co-ordinate systems for the
wave function expansions.
E
D
PIn recent developments, a combination of boundary ele-

ment method with a plane finite element mesh for model-
ling of the lining at the boundary of the cavity is used to
achieve the lining internal forces.

The method is limited to two dimensional analysis and is
considered costly, since the flextural behaviour of lining is
modelled using plane strain elements.

In the present work, a FEM/BEM method is chosen,
but the behaviour of lining is replaced by introducing a ring
element, with the same concept of ovalization used in
elbow element (Bathe et al., 1980,1982,1983; Vahdani,
1982). In this way, not only the flextural behaviour of lin-
ing is modelled using a few modes of Fourier series, but the
analysis can be extended to the longitudinal direction, use-
ful for analysis of curved tunnels. Of course the method is
limited to circular tunnels.

2. Boundary element formulation of wave scattering around

circular cavities

For elastic, homogeneous, isotropic domain X, the
equations of motion or Navier�s equations are presented as:

lui;jj þ ðkþ lÞuj;ji þ qbi ¼ q€ui; ð1Þ
where k and l are Lame�s constants and q is medium
density.

Denoting pressure and shear wave velocities by c1 and
c2, respectively, Eq. (1) can be re-written in frequency
domain with its corresponding boundary conditions:

ðc21 � c22Þui;ij þ c22uj;ii þ bj þ x2uj ¼ 0; ð2Þ
uiðx;xÞ ¼ Ui : x 2 C1; ð3Þ
tiðx;xÞ ¼ rijnj ¼ T i : x 2 C2;

where Ti and Ui are the traction and displacement vectors,
respectively, and C = C1 + C2 represents the surface of the
domain.
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Fig. 2. Deformation field for circular tunnel lining.

Fig. 3. Deformation modes of cavity.
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The weak form of Eq. (2), using displacement and trac-
tion fundamental solutions, and reciprocal theorem in elas-
todynamic can be written as follows:

uil þ
Z
C
p�lkuk dC ¼

Z
C
u�lkpk dC; ð4Þ

where u�lk and p�lk are the displacement and traction in k-
direction, when the load is applied in the l-direction.

uk, pk are displacement and traction in boundary points.
Moving the loading point to boundary and omitting cre-
ated singularities, the other form of above equation is

cilku
i
k þ

Z
C
p�lkuk dC ¼

Z
C
u�lkpk dC; ð5Þ

where the coefficients cilk are equal to
1
2
dlk for any point on

the smooth boundary. Using isoperimetric quadratic ele-
ments for discretization of the cavity�s boundary, the ma-
trix representation of Eq. (5) is

ciui þ
XNE
j¼1

Z
Cj

p�UdC

( )
uj ¼

XNE
j¼1

Z
Cj

u�UdC

( )
pj; ð6Þ

U ¼ ½U1;U2;U3�; ð7Þ

UK ¼
/k 0

0 /k

� �
; ð8Þ

where the /k are quadratic interpolation functions and NE

is the number of boundary elements.
In Eq. (6), the integral along Cj needs to be transformed

to the homogeneous coordinate as follow:Z
Cj

p�UdC ¼
Z þ1

�1

p�UjGjdn ¼
Z þ1

�1

p�½U1U2U3�jGjdn

¼ ½hij1 h
ij
2 h

ij
3 �; ð9ÞZ

Cj

u�UdC ¼
Z þ1

�1

u�UjGjdn ¼
Z þ1

�1

u�½U1U2U3�jGjdn

¼ ½gij1 g
ij
2g

ij
3 �; ð10Þ

where |G| is the Jacobin matrix and n is local coordinate
along the boundary elements.

Assembling the element matrixes along the N boundary
point will result in general matrix equation,

HU ¼ GP ; ð11Þ
where H and G are the 2N · 2N square matrixes that con-
tain integral of traction and displacement tensors as shown
in Eqs. (9) and (10) (Dominguez, 1993).

In the case of P–SV waves scattering, total displacement
and traction fields at the boundary of unlined tunnel are
defined as:

u ¼ ui þ us; ð12Þ
p ¼ pi þ ps ¼ 0; ð13Þ

where ui and us are incident and scattered wave displace-
ment fields, and pi and ps are incident and scattered trac-
tions, respectively. Having the applied incident wave
displacement field ui, the boundary displacements can be
P
R
O
O
F

obtained by solving the matrix equation (11), in conjunc-
tion with Eqs. (12) and (13) (Manolis and Beskose, 1988).

3. Ovalization of the lining

The tunnel lining, as a separate structure, will experience
some deformations by the earthquake wave passing through
the media. Assuming that the lining will not be separated
from the cavity, the boundary element formulation should
include the strain energy stored in lining during earthquake
deformations. Evaluation of this energy may be done by
expanding the deformations of the lining in terms of Fourier
series and choosing the proper terms as are shown in Figs. 2
and 3, and described by the following equations:

ur ¼ C0 � C1 cos hþ C2 sin h� 2C3 cos 2hþ 2C4 sin 2h; ð14Þ
uh ¼ C1 sin hþ C2 cos hþ C3 sin 2hþ C4 cos 2h. ð15Þ

As it can be seen, the term C0 will explain uniform expan-
sion of lining, the term C1 and C2 will cause no deforma-
tion, but allow the rigid body transformations and the
terms C3 and C4 will explain the symmetric and asymmetric
ovalizations, which are the major deformations compo-
nents (Vahdani, 1982). Of course more terms can be added
to the series if needed.
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The corresponding strain components for thin lining can
be derived as follows (Oden and Ripperger, 1981):

ehh ¼
ur
R
þ 1

R
duh
dh

� y

R2

d2ur
dh2

; ð16Þ

crh ¼
1

R
dur
dh

; ð17Þ
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Fig. 4. Comparison of hoop stress around circular cavity for P wave with
xr
c1
¼ 1 in present method with Pao and Maw Method (1973).

Fig. 5. Deformation components of cavity with
P
R
O
O
F

where, R is the mean radius of the lining.
Substitution of, ur, uh from Eqs. (14) and (15) will result

in the following matrix equation:

e ¼ B � CT; ð18Þ
where

B ¼
1
R

�y cos h
R2

y sin h
R2

�8y cos 2h
R2

8y sin 2h
R2

0 sin h
R

cos h
R

4 sin 2h
R

4 cos 2h
R

" #
; ð19Þ

C ¼ C0 C1 C2 C3 C4½ �. ð20Þ

In any variational approach, such as the Rayleigh–Ritz
method, minimization of the potential energy will establish
the equilibrium equation and lies to the appropriate stiff-
ness matrix. In this case, the C constants only approximate
the deformations of lining and are independent from other
constants which explain the deformation of the media.
Therefore, the above-mentioned minimization, will result
in the stiffness of the lining, if it supposed to be loaded
independently, or the lining�s stiffness participation in its
interaction with the deformations of media.

Forming the strain energy and handling the required
integrals will lie to the following 5 · 5 stiffness matrix:
E
D

radius equal to 6 m against vertical P wave.
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dE ¼ 1

2

Z
V
ðe � rÞdV ¼ 1

2

Z
V
eDedV ; ð21Þ

KRING ¼
Z t

2

� t
2

Z 2p

0

ðBT � D � BÞ � Rdhdy; ð22Þ

D ¼ E
2ð1þ mÞ

2ð1þ mÞ 0

0 1

� �
; ð23Þ

½K�fCg ¼ fF g; ð24Þ
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R
E
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T

Fig. 6. Deformation components of cavity with r
where D is the matrix of constants and E and m are elastic-
ity module and Poisson ratio of the ring material, respec-
tively, and F is the 5 · 1 vector of external forces.
4. Mixed formulation

The interaction of the lining and media, under the effect
of earthquake waves, may be established by equating the
E
D
P
R
O
O
F

adius equal to 6 m against vertical SV wave.
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Table 1
Characteristics of material in second example

Ratio of ring
shear modulus
to medium lr

lm

Ratio of outer
radius of ring to
inner radius g

Ring Poisson
ratio

Medium Poisson
ratio

3 1.05 0.25 0.25
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Fig. 8. Shear stress at inside and interface of tunnel lining for vertical P
wave.
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Fig. 7. Hoop stress at inside and interface of tunnel lining for vertical P
wave.
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displacements of lining and the media at the cavity�s
boundary (Brebbia and Dominguez, 1989). Of course,
these two fields of deformations have been estimated differ-
ently in the previous sections. Deformations of lining are
expressed in terms of C constants, and the same deforma-
tions due to media are in terms of nodal displacements.
Changing the BEM�s deformations in terms of C constants,
and equating them with the lining deformations will result
in the final assembled equations as follow:

½M �2N�2N ½G�
�1
2N�2N ½H �2N�2NfUSg2N�1 ¼ ½M �2N�2NfP Sg2N�1;

ð25Þ

M ¼
Z
C
NTN dC; ð26Þ

N ¼
/1 0 /2 0 /3 0

0 /1 0 /2 0 /3

� �
; ð27Þ

where /1,/2,/3 are quadratic interpolation functions.
Using the Eqs. (14) and (15) for N boundary points, the

general transformation matrix could be established:

fUSg2N�1 ¼ ½T �2N�5fCSg5�1; ð28Þ

T N ¼
1 � cos hN sin hN �2 cos 2hN 2 sin 2hN
0 sin hN cos hN sin 2hN cos 2hN

� �
; ð29Þ

where the {CS} vector contains the soil–structure interac-
tion effect. Substituting {US} from Eq. (28) in Eq. (25), will
result,

T T �M � G�1 � H � T � CS ¼ T T �M � P S. ð30Þ
Adding the stiffness matrix of ring from Eq. (24) to the
above equation, assuming F equal to zero, gives the final
form of soil–structure interaction equation,

ðK þ T T �M � G�1 � H � T Þ � CS ¼ T T �M � P S. ð31Þ
Vector of constant {CS} can be calculated from Eq. (31).
Similarly for incident wave Eq. (28) may be written as:

fUig2N�1 ¼ ½T �2N�5fCig5�1; ð32Þ
fCig ¼ ð½T �T½T �Þ�1ð½T �TfUigÞ. ð33Þ

Finally we have

fCg ¼ fCig þ fCsg. ð34Þ
In the above equations, the vector Ui are the imposed wave
displacements, and C constants are the unknowns to be
found. In the next step, the hoop and shear stresses distri-
butions around the ring could be evaluated.
0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

r/cs

σ
θθ

∗

Fig. 9. Hoop stress at inside and interface of tunnel lining for vertical SV
wave.
U5. Numerical examples

Three examples are presented to evaluate the proposed
method, as well as to compare the results with other
sources, where it is possible. In the first example, the
aim is to verify the algorithm. Therefore, a cavity with no
lining is chosen to be compared with results of analytical
work done by Pao and Maw (1973). The hoop stress
around the circular cavity caused by pressure wave with
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Fig. 12. Effect of thickness and shear modulus ratio on shear stress at
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non-dimensional frequency equal to one (xrc1 , where x is cir-
cular frequency, r is radius of cavity and c1 is pressure wave
velocity) is presented in Fig. 4, which shows the very good
agreement with the above-mentioned work. Furthermore,
the imaginary and the real parts of the solution for P and
SV waves for various non-dimensional frequencies are
shown in Figs. 5 and 6, which represents the rigid body
and ovalization modes of deformation, respectively.

In the second example, a lining with the characteristics
of Table 1 is added to the cavity.

The stresses concentration factors are shown in Figs. 7–
10 for various non-dimensional frequencies of P and SV
waves, respectively. In this example the hoop and shear
stresses in the lining are presented non-dimensionally for
inside and interface of lining and media, respectively.

In third example, the effect of thickness and relative
shear modulus of medium to ring is investigated by a para-
metric study in non-dimensional frequency equal to 0.3.
The characteristics of the material are shown in Table 2.
U
N
C
O
R
R

Table 2
Characteristics of material in third example

Ratio of
medium shear
modulus to ring lm

lr

Ratio of outer
radius of ring to
inner radius g

Ring Poisson
ratio

Medium Poisson
ratio

0.1 to 1.5 1.01, 1.05, 1.1 0.25 0.25
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Fig. 11. Effect of thickness and shear modulus ratio on hoop stress at
inside of tunnel lining for vertical P wave.

1
0 0.25 0.5 0.75 1 1.25 1.5

µ
m

/µ
r

Fig. 14. Effect of thickness and shear modulus ratio on shear stress at
interface of tunnel lining for vertical P wave.
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Fig. 15. Effect of thickness and shear modulus ratio on hoop stress at
inside of tunnel lining for vertical SV wave.
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U
NAs it can be seen in Figs. 11–18, the increase in lm

lr
ratio

or thickness, causes the reduction of stresses in lining. In
addition in the case of SV wave and soft to very soft ring,
variation of thickness does not have any effect on interface
shear stress.

6. Conclusion

The stress concentration in circular tunnel linings has
been studied, subjected to the seismic waves.

It is shown that trigonometric functions are very suit-
able to represent the deformations of circular tunnel lining
F

in mixed formulation of FEM/BEM. Also the proposed
method is expandable to the longitudinal direction, in the
case of curved axis tunnel lining.

It is shown that for low frequency waves the rigid body
transformation of the cavity due to wave passing is very
well separated from deformations by the means of real
and imaginary parts of the results. Therefore, the method
can accurately be used with a few terms, since the deforma-
tions of cavity itself is very close to the ovalization, and
more terms may be needed otherwise. Stiffness of lining
does not change the maximum stress concentration, which
occurs in non-dimensional frequency of 0.3.
E
D
P
R
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