نرمافزار داده کاوی Weka 1-مقدمه تا به امروز نرم افزار های تجاری و آموزشی فراوانی برای داده کاوی در حوزه های مختلف داده ها به دنیای علم و فناوری عرضه شدهاند. هریک از آنها با توجه به نوع اصلی داده هایی که مورد کاوش قرار میدهند، روی الگوریتمهای خاصی متمرکز شدهاند. مقایسه دقیق و علمی این ابزارها باید از جنبه های متفاوت و متعددی مانند تنوع انواع و فرمت داده های ورودی، حجم ممکن برای پردازش داده ها، الگوریتمها پیاده سازی شده، روشهای ارزیابی نتایج، روشهای مصور سازی [1] ، روشهای پیش پردازش [2] داده ها، واسطهای کاربر پسند [3] ، پلت فرم [4] های سازگار برای اجرا، قیمت و در دسترس بودن نرم افزار صورت گیرد. از آن میان، نرم افزار Weka با داشتن امکانات بسیار گسترده، امکان مقایسه خروجی روشهای مختلف با هم، راهنمای خوب، واسط گرافیگی کارآ، سازگاری با سایر برنامههای ویندوزی، و از همه مهمتر وجود کتابی بسیار جامع و مرتبط با آن [ Data Mining, witten et Al. 2005 ] ، معرفی میشود. میزکار [5] Weka ، مجموعهای از الگوریتمهای روز یادگیری ماشینی و ابزارهای پیش پردازش دادهها میباشد. این نرمافزار به گونهای طراحی شده است که میتوان به سرعت، روشهای موجود را به صورت انعطافپذیری روی مجموعههای جدید داده، آزمایش نمود. این نرمافزار، پشتیبانیهای ارزشمندی را برای کل فرآیند داده کاوی های تجربی فراهم میکند. این پشتیبانیها، آماده سازی دادههای ورودی، ارزیابی آماری چارچوبهای یادگیری و نمایش گرافیکی دادههای ورودی و نتایج یادگیری را در بر میگیرند. همچنین، هماهنگ با دامنه وسیع الگوریتمهای یادگیری، این نرمافزار شامل ابزارهای متنوع پیش پردازش دادههاست. این جعبه ابزار [6] متنوع و جامع، از طریق یک واسط متداول در دسترس است، به نحوی که کاربر میتواند روشهای متفاوت را در آن با یکدیگر مقایسه کند و روشهایی را که برای مسایل مدنظر مناسبتر هستند، تشخیص دهد. نرمافزار Weka در دانشگاه Waikato واقع در نیوزلند توسعه یافته است و اسم آن از عبارت "Waikato Environment for knowledge Analysis" استخراج گشته است. همچنین Weka ، نام پرندهای با طبیعت جستجوگر است که پرواز نمیکند و در نیوزلند، یافت میشود. این سیستم به زبان جاوا نوشته شده و بر اساس لیسانس عمومی و فراگیر [7] GNU انتشار یافته است. Weka تقریباً روی هر پلت فرمی اجرا میشود و نیز تحت سیستم عاملهای لینوکس، ویندوز، و مکینتاش، و حتی روی یک منشی دیجیتالی شخصی [8] ، آزمایش شده است. این نرمافزار، یک واسط همگون برای بسیاری از الگوریتمهای یادگیری متفاوت، فراهم کرده است که از طریق آن روشهای پیش پردازش، پس از پردازش [9] و ارزیابی نتایج طرح های یادگیری روی همه مجموعه های داده موجود، قابل اعمال است. نرم افزار Weka ، پیاده سازی الگوریتمهای مختلف یادگیری را فراهم میکند و به آسانی میتوان آنها را به مجموعه های داده خود اعمال کرد. همچنین، این نرمافزار شامل مجموعه متنوعی از ابزارهای تبدیل مجموعههای دادهها، همانند الگوریتمهای گسسته سازی [10] میباشد. در این محیط میتوان یک مجموعه داده را پیش پردازش کرد، آن را به یک طرح یادگیری وارد نمود، و دستهبندی حاصله و کارآییاش را مورد تحلیل قرار داد. (همه این کارها، بدون نیاز به نوشتن هیچ قطعه برنامهای میسر است.) این محیط، شامل روشهایی برای همه مسایل استاندارد داده کاوی مانند رگرسیون، ردهبندی، خوشهبندی، کاوش قواعد انجمنی و انتخاب ویژگی میباشد. با در نظر گرفتن اینکه، دادهها بخش مکمل کار هستند، بسیاری از ابزارهای پیش پردازش دادهها و مصورسازی آنها فراهم گشته است. همه الگوریتمها، ورودیهای خود را به صورت یک جدول رابطهای [11] به فرمت ARFF دریافت میکنند. این فرمت دادهها، میتواند از یک فایل خوانده شده یا به وسیله یک درخواست از پایگاه دادهای تولید گردد. یکی از راههای به کارگیری Weka ، اعمال یک روش یادگیری به یک مجموعه داده و تحلیل خروجی آن برای شناخت چیزهای بیشتری راجع به آن اطلاعات میباشد. راه دیگر استفاده از مدل یادگیری شده برای تولید پیشبینیهایی در مورد نمونههای جدید است. سومین راه، اعمال یادگیرندههای مختلف و مقایسه کارآیی آنها به منظور انتخاب یکی از آنها برای تخمین میباشد. روشهای یادگیری Classifier نامیده میشوند و در واسط تعاملی [12] Weka ، میتوان هر یک از آنها را از منو [13] انتخاب نمود. بسیاری از classifier ها پارامترهای قابل تنظیم دارند که میتوان از طریق صفحه ویژگیها یا object editor به آنها دسترسی داشت. یک واحد ارزیابی مشترک، برای اندازهگیری کارآیی همه classifier به کار میرود. پیاده سازیهای چارچوبهای یادگیری واقعی، منابع بسیار ارزشمندی هستند که Weka فراهم میکند. ابزارهایی که برای پیش پردازش دادهها استفاده میشوند. filter نامیده میشوند. همانند classifier ها، میتوان filter ها را از منوی مربوطه انتخاب کرده و آنها را با نیازمندیهای خود، سازگار نمود. در ادامه، به روش به کارگیری فیلترها اشاره میشود. علاوه بر موارد فوق، Weka شامل پیاده سازی الگوریتمهایی برای یادگیری قواعد انجمنی، خوشهبندی دادهها در جایی که هیچ دستهای تعریف نشده است، و انتخاب ویژگیهای مرتبط [14] در دادهها میشود. 2- روش استفاده از Weka شکل 1، راههای انتخاب واسطهای مختلف Weka را نشان میدهد. آسانترین راه استفاده از Weka ، از طریق واسطی گرافیکی است که Explorer خوانده میشود. این واسط گرافیکی، به وسیله انتخاب منوها و پر کردن فرمهای مربوطه، دسترسی به همه امکانات را فراهم کرده است. برای مثال، میتوان به سرعت یک مجموعه داده را از یک فایل ARFF خواند و درخت تصمیمگیری آن را تولید نمود. امادرختهای تصمیمگیری یادگیرنده صرفاً ابتدای کار هستند. الگوریتمهای بسیار دیگری برای جستجو وجود دارند. واسط Explorer کمک میکند تا الگوریتمهای دیگر نیز آزمایش شوند. شکل 1. Weka در وضعیت انتخاب واسط این واسط با در اختیار گذاشتن گزینهها به صورت منو، با وادار کردن کاربر به اجرای کارها با ترتیب صحیح، به وسیله خاکستری نمودن گزینهها تا زمان صحیح به کارگیری آنها، و با در اختیار گذاشتن گزینههایی به صورت فرمهای پرشدنی، کاربر را هدایت میکند. راهنمای ابزار مفیدی، حین عبور ماوس از روی گزینهها، ظاهر شده و اعمال لازم مربوطه را شرح میدهد. پیشفرضهای معقول قرار داده شده، کاربر را قادر میسازند تا با کمترین تلاشی، به نتیجه برسد. اما کاربر باید برای درک معنی نتایج حاصله، راجع به کارهایی که انجام میدهد، بیندیشد. Weka دو واسط گرافیکی دیگر نیز دارد. واسط knowledge flow به کاربر امکان میدهد تا چنیشهایی برای پردازش دادههای در جریان، طراحی کند. یک عیب پایهای Explorer . نگهداری هر چیزی در حافظه اصلی آن است. (زمانی که یک مجموعه داده را باز میکنیم، Explorer ، کل آن را، در حافظ باز میکند) نشان میدهد که Explorer ، صرفاً برای مسایل با اندازههای کوچک تا متوسط، قابل اعمال است. با وجود بر این Weka شامل تعدادی الگوریتمهای افزایشی است که میتواند برای پردازش مجموعه های داده بسیار بزرگ مورد استفاده قرار گیرد. واسط knowledge flow امکان میدهد تا جعبه [15] های نمایانگر الگوریتمهای یادگیری و منابع دادهها را به درون صفحه بکشیم و با اتصال آنها به یکدیگر، ترکیب و چینش دلخواه خود را بسازیم. این واسط اجازه میدهد تا جریان دادهای از مؤلفههای به هم متصل که بیانگر منابع داده، ابزارهای پیش پردازش، روشهای ارزیابی و واحدهای مصوّر سازی هستند تعریف شود. اگر فیلترها و الگوریتمهای یادگیری، قابلیت یادگیری افزایشی را داشته باشند، دادهها به صورت افزایشی بار شده و پردازش خواهند شد. سومین واسط Weka ، که Experimenter خوانده میشود، کمک میکند تا به این سؤال عملی و پایهای کاربر حین استفاده از تکنیکهای ردهبندی و رگرسیون، پاسخ دهد: "چه روشها و پارامترهایی برای مسأله داده شده، بهتر عمل میکنند؟" عموماً راهی برای پاسخگویی مقدماتی به این سؤال وجود ندارد و یکی از دلایل توسعه Weka ، فراهم نمودن محیطی است که کاربران Weka را قادر به مقایسه تکنیکهای گوناگون یادگیری بنماید. این کار، میتواند به صورت تعاملی در Explorer انجام شود. با این وجود، Experimenter با ساده کردن اجرای ردهبندی کنندهها و فیلترها با پارامترهای گوناگون روی تعدادی از مجموعههای داده، جمعآوری آمار کارآیی و انجام آزمایشهای معنا، پردازش را خودکار میکند. کاربرهای پیشرفته، میتوانند از Experimenter برای توزیع بار محاسباتی بین چندین ماشین، استفاده کنند. در این روش، میتوان آزمایشهای آماری بزرگی را راهاندازی نموده و آنها را برای اجرا، رها نمود. ورای این واسطهای تعاملی، عملکرد پایهای Weka قرار دارد. توابع پایهای Weka ، از طریق خط فرمان [16] های متنی قابل دسترسی هستند. زمانی که Weka ، فعال میشود، امکان انتخاب بین چهار واسط کاربری وجود دارد: Explorer ، knowledge ، Experimenter و واسط خط فرمان. اکثر کاربران، حداقل در ابتدای کار Explorer را به عنوان واسط کاربری انتخاب میکنند. 3. قابلیتهای Weka مستندسازی در لحظه، که به صورت خودکار از کد اصلی تولید میشود و دقیقاً ساختار آن را بیان میکند، قابلیت مهمی است که حین استفاده از Weka وجوددارد. نحوه استفاده از این مستندات و چگونگی تعیین پایههای ساختمانی اصلی Weka ، مشخص کردن بخشهایی که از روشهای یادگیری با سرپرست استفاده میکند، ابزاری برای پیش پردازش دادهها بکار میرود و اینکه چه روشهایی برای سایر برنامههای یادگیری وجود دارد، در ادامه تشریح خواهد شد. تنها به لیست کاملی از الگوریتمهای موجود اکتفا میشود زیرا Weka به طور پیوسته تکمیل میشود و به طور خودکار از کد اصلی تولید میشود. مستندات در لحظه همیشه به هنگام شده میباشد. اگر ادامه دادن به مراحل بعدی و دسترسی به کتابخانه از برنامه جاوا شخصی یا نوشتن و آزمایش کردن برنامههای یادگیری شخصی مورد نیاز باشد، این ویژگی بسیار حیاتی خواهد بود. در اغلب برنامههای کاربردی داده کاوی، جزء یادگیری ماشینی، بخش کوچکی از سیستم نرمافزاری نسبتاً بزرگی را شامل میشود. در صورتی که نوشتن برنامه کاربردی داده کاوی مد نظر باشد، میتوان با برنامهنویسی اندکی به برنامههای Weka از داخل کد شخصی دسترسی داشت. اگر پیدا کردن مهارت در الگوریتمهای یادگیری ماشینی مدنظر باشد، اجرای الگوریتمهای شخصی بدون درگیر جزییات دست و پا گیر شدن مثل خواندن اطلاعات از یک فایل، اجرای الگوریتمهای فیلترینگ یا تهیه کد برای ارزیابی نتایج یکی از خواستهها میباشد. Weka دارای همه این مزیتها است. برای استفاده کامل از این ویژگی، باید با ساختارهای پایهای دادهها آشنا شد. 4. دریافت Weka نرم افزار Weka ، در آدرس http://www.cs.waikato.ac.nz/me/weka ، در دسترس است. از این طریق میتوان نصب کننده [17] متناسب با یک پلت فرم معین، یا یک فایل Java jar را که در صورت نصب بودن جاوا به راحتی قابل اجرا است، دانلود [18] نمود. 5. مروری بر Explorer واسط گرافیکی اصلی برای کاربران، Explorer است که امکان دسترسی به همه امکانات Weka را از طریق انتخاب منوها و پر کردن فرمها فراهم میآورد. شکل 2، نمای Explorer را نشان میدهد. در این واسط، شش پانل [19] مختلف وجود دارد که از طریق نوار [20] بالای صفحه قابل انتخاب هستند و با وظایف [21] داده کاوی پشتیبانی شده توسط Weka متناظر میباشند. شکل 2. واسط گرافیکی Explorer دو گزینه از شش گزینه بالای پنجره Explorer در شکل های 3 و 4 به طور خلاصه تشریح شده است. به طور خلاصه، کارکرد تمام گزینهها به شرح ذیل است. Preprocess : انتخاب مجموعه داده و اصلاح [22] آن از راههای گوناگون Classify : آموزش [23] برنامههای یادگیری که ردهبندی یا رگرسیون انجام میدهند و ارزیابی آنها. Cluster : یادگیری خوشهها برای مجموعه های داده Associate : یادگیری قواعد انجمنی برای دادهها و ارزیابی آنها Select attributes : انتخاب مرتبطترین جنبه [24] ها در مجموعه های داده Visualize : مشاهده نمودارهای مختلف دوبعدی دادهها و تعامل با آنها شکل 3. خواندن فایل داده های آب و هوا Weka Exphorer امکان رده بندی دارد، چنانچه به کاربران اجازه میدهد به صورت تعاملی اقدام به ساخت درخت تصمیمگیری کنند. Weka نمودار پراکندگی دادهها را نسبت به دو ویژگی انتخاب شده، فراهم میآورد. وقتی زوج ویژگیای که ردهها را به خوبی جدا میکند، پیدا شد، امکان ایجاد دو شاخه با کشیدن چند ضلعی اطراف نقاط دادهها بر نمودار پراکندگی وجود دارد. شکل 4. نوار Classify هر نوار، دسترسی به دامنه کاملی از امکانات را فراهم میکند. در پایین هر پانل، جعبه status و دکمه log قرار دارد. جعبه status پیغامهایی است که نشان میدهد چه عملیاتی در حال انجام داده شدن است. مثلاً اگر Explores مشغول خواندن یک فایل باشد، جعبه status آن را گزارش میدهد. کلیک راست در هر جا داخل این جعبه یک منو کوچک با دو گزینه میآورد، نمایش میزان حافظه در دسترس Weka و اجرای Java garbage collector .. لازم است توجه شود که garbage collector به طور ثابت به عنوان یک عمل پیش زمینه [25] در هر حال اجرا میشود کلیک دکمه log ، گزارش عملکرد متنی کارهایی که Weka تاکنون در این بخش انجام داده است با برچسب زمانی ارایه میکند. زمانیکه Weka در حال عملیات است، پرنده کوچکی که در پایین سمت راست پنجره است، بالا و پایین میپرد. عدد پشت × نشان میدهد که به طور همزمان چند عملیات در حال انجام است. اگر پرنده بایستد در حالیکه حرکت نمیکند، او مریض است! اشتباه رخ داده است و باید Explorer از نو اجرا شود. 1. خواندن و فیلتر کردن فایلها در بالای پانل Preprocess در شکل 3، دکمههایی برای باز کردن فایل، URL ها و پایگاه های داده وجود دارد. در ابتدا تنها فایلهای با پسوند arff . در browser فایل نمایش داده میشود. برای دیدن سایر فایلها یاید گزینه [26] Format در جعبه انتخاب فایل تغییر داده شود. 2. تبدیل فایلها به فرمت ARFF نرم افزار Weka دارای سه مبدل فرمت فایل [27] میباشد، برای فایلهای صفحه گسترده [28] با پسوند CSV ، با فرمت فایل C4.5 با پسوند names . و data و برای نمونههای سری با پسوند bsi . اگر Weka قادر به خواندن دادهها نباشد، سعی میکند آن را به صورت ARFF تفسیر کند. اگر نتواند جعبه نشان داده شده در شکل 5 (الف) ظاهر میشود. (الف) (ب) (ج) شکل 5. ویرایشگر عمومی اشیاء (الف) ویرایشگر (ب) اطلاعات بیشتر (فشردن دگمه More ) (ج) انتخاب یک مبدل این، یک ویرایشگر عمومی [29] اشیاء است که در Weka برای انتخاب و تنظیم اشیا بکار میرود. به عنوان مثال وقتی پارامتری برای Classifier تنظیم میشود، جعبهای با نوع مشابه بکار برده میشود. CSV Loader برای فایلهای با پسوند CSV . به طور پیش فرض انتخاب میشود. دکمه More اطلاعات بیشتری در مورد آن میدهد که در شکل 5 (ب) نشان داده شده است. همیشه مطالعه مستندات [30] ارزشمنداست! در این حالت نشان میدهد که ردیف نخست صفحه گسترده، نام ویژگی را تعیین میکند. برای استفاده از این مبدل باید بر Ok کلیک شود. برای مورد مختلف لازم است بر choose کلیک شود تا از لیست شکل 5 (ج) انتخاب انجام شود. گزینه اول، Arffloader است و فقط به دلیل ناموفق بودن به این نقطه میرسیم. CSVLoader پیش فرض است و در صورت نیاز به فرض دیگر، choose کلیک میشود. سومین گزینه، مربوط به فرمت C4.5 است که دو فایل برای مجموعه داده وجود دارد یکی اسمها و دیگـری دادههای واقعـی میباشد. چهارمین برای نمونههای سریالی [31] ، برای بازخوانی [32] مجموعه دادهای است که به صورت شیئ سریالی شده جاوا ذخیره شده است. هر شیء در جاوا میتواند در این شکل ذخیره و بازخوانی شود. به عنوان یک فرمت بومی جاوا [33] ، سریعتر از فایل ARFF خوانده میشود چرا که فایل ARFF باید تجزیه [34] و کنترل شود. وقتی یک مجموعه داده بزرگ مکررا بازخوانی میشود، ذخیره آن در این شکل سودمند است. ویژگیهای دیگر ویرایشگر عمومی اشیا در شکل 5 (الف)، save و open است که به ترتیب برای ذخیره اشیای تنظیم شده و بازکردن شیئی که پیش از این ذخیره شده است، به کار میرود. اینها برای این نوع خاص شیئ مفید نیستند. لکن پانلهای دیگر ویرایشگر عمومی اشیاء، خواص قابل ویرایش زیادی دارند. به دلیل مشکلاتی که ممکن است حین تنظیم مجدد آنها رخ دهد، میتوان ترکیب اشیاء ایجاد شده را برای استفادههای بعدی، ذخیره کرد. تنها منبع [35] مجموعههای داده برای Weka ، فایلهای موجود روی کامپیوتر نیستند. میتوان یک URL را باز کرد تا Weka از پروتکل HTTP برای دانلود کردن یک فایل Arff از شبکه استفاده کند. همچنین میتوان یک پایگاه دادهها را باز نمود ( open DB ـ هر پایگاه دادهای که درایور اتصال به مجموعه های داده به زبان جاوا JDBC را دارد.) و به وسیله دستور select زبان SQL ، نمونهها را بازیابی نمود. دادهها میتوانند به کمک دگمه save به همه فرمتهای ذکر شده، ذخیره شوند. جدای از بحث بارگذاری و ذخیره مجموعههای داده، پانل preprocess به کاربر اجازه فیلتر کردن دادهها را میدهد. فیلترها، اجزای مهم Weka هستند. 3. بکارگیری فیلترها با کلیک دگمه choose (گوشه بالا و سمت چپ) در شکل 3 میتوان به لیستی از فیلترها دست یافت. میتوان از فیلترها برای حذف ویژگیهای مورد نظری از یک مجموعه داده و انتخاب دستی ویژگیها استفاده نمود. مشابه این نتیجه را میتوان به کمک انتخاب ویژگیهای مورد نظر با تیک زدن آنها و فشار دادن کلیه Remove به دست آورد. 4. الگوریتمهای یادگیری زمانی که یک الگوریتم یادگیری با استفاده از دگمه choose در پانل classify انتخاب میشود، نسخه خط فرمانی رده بند در سطری نزدیک به دگمه ظاهر میگردد. این خط فرمان شامل پارامترهای الگوریتم است که با خط تیره مشخص میشوند. برای تغییر آنها میتوان روی آن خط کلیک نمود تا ویرایشگر مناسب شیء، باز شود. جدول شکل 6، لیست اسامی رده بندهای Weka را نمایش میدهد. این الگوریتمها به رده بندهای Bayesian ، trees ، functions rules ، lazy و دسته نهایی شامل روشهای متفرقه تقسیم شدهاند. 4-1. Trees Decision stump که برای استفاده توسط روشهای boosting طراحی شده است، برای مجموعههای داده عددی یا ردهای، درخت تصمیمگیری یک سطحی میسازد. این الگوریتم، با مقادیر از دست رفته، به صورت مقادیر مجزا برخورد کرده و شاخه سومی از درخت توسعه میدهد. 4-2. Rules Decision Table یک رده بند بر اساس اکثریت جدول تصمیمگیری میسازد. این الگوریتم، با استفاده از جستجوی اولین بهترین، زیر دستههای ویژگیها را ارزیابی میکند و میتواند از اعتبارسنجی تقاطعی برای ارزیابی بهره ببرد (1995، Kohavi ). یک امکان این است که به جای استفاده از اکثریت جدول تصمیمگیری که بر اساس دسته ویژگیهای مشابه عمل میکند، از روش نزدیکترین همسایه برای تعیین رده هر یک از نمونهها که توسط مدخل [36] جدول تصمیمگیری پوشش داده نشدهاند، استفاده شود. Conjunctive Rule قاعدهای را یاد میگیرد که مقادیر ردههای عددی را ردهای را پیشبینی میکند. نمونههای آزمایشی به مقادیر پیش فرض رده نمونههای آموزشی، منسوب میشوند. سپس تقویت اطلاعات (برای ردههای رسمی)، یا کاهش واریانس (برای ردههای عددی) مربوط به هر والد محاسبه شده و به روش هرس کردن با خطای کاهش یافته [37] ، قواعد هرس میشوند. ZeroR برای ردههای اسمی، اکثریت دادههای مورد آزمایش و برای ردههای عددی، میانگین آنها را پیشبینی میکند. این الگوریتم بسیار ساده است. M5Rules ، به کمک M5 از روی درختهای مدل، قواعد رگرسیون استخراج میکند. شکل 6.الف. الگوریتمهای رده بندی در Weka شکل 6.ب. الگوریتمهای رده بندی در Weka در این بخش به شرح مختصری برخی از این الگوریتمها و پارامترهایشان که قابلیت کار با ویژگی های عددی را دارند، پرداخته میشود. 4-3. Functions Simple Linear Regresion مدل رگرسیون خطی یک ویژگی مشخص را یاد میگیرد. آنگاه مدل با کمترین خطای مربعات را انتخاب میکند. در این الگوریتم، مقادیر از دست رفته و مقادیر غیرعددی مجاز نیستند [38] . Linear Regression رگرسیون خطی استاندارد کمترین خطای مربعات را انجام میدهد میتواند به طور اختیاری به انتخاب ویژگی بپردازد، این کار میتواند به صورت حریصانه [39] با حذف عقب رونده [40] انجام شود، یا با ساختن یک مدل کامل از همه ویژگیها و حذف یکی یکی جملهها با ترتیب نزولی ضرایب استاندارد شده آنها، تا رسیدن به شرط توقف مطلوب انجام گیرد. Least Med sq یک روش رگرسیون خطی مقاوم است که میانه [41] (به جای میانگین [42] ) مربعات انحراف از خط رگرسیون را کمینه میکند. این روش به طور مکرر رگرسیون خطی استاندارد را به زیرمجموعههایی از نمونهها اعمال میکند و نتایجی را بیرون میدهد که کمترین خطای مربع میانه را دارند. SMO teg الگوریتم بهینه سازی حداقل ترتیبی را روی مسایل رگرسیون اعمال میکند. ( Scholkopf, 1998 ، Smola ) Pace Regression ، با استفاده از تکنیک رگرسیون pace ، مدلهای رگرسیون خطی تولید میکند (2002 ، Wang و Witten ). رگرسیون pace ، زمانی که تعداد ویژگیها خیلی زیاد است، به طور ویژهای در تعیین ویژگیهایی که باید صرفنظر شوند، خوب عمل میکند. در واقع در صورت وجود نظم و ترتیب خاصی، ثابت میشود که با بینهایت شدن تعداد ویژگیها، الگوریتم بهینه عمل میکند. RBF Network ، یک شبکه با تابع پایهای گوسی شعاعی را پیاده سازی میکند. مراکز و عرضهای واحدهای مخفی به وسیله روش میانگین K [43] تعیین میشود. سپس خروجیهای فراهم شده از لایههای مخفی [44] ، با استفاده از رگرسیون منطقی در مورد ردههای اسمی و رگرسیون خطی در مورد ردههای عددی، با یکدیگر ترکیب میشوند. فعال سازیهای توابع پایه پیش از ورود به مدلهای خطی، با جمع شدن با عدد یک، نرمالیزه میشوند. در این الگوریتم میتوان، K تعداد خوشهها، بیشترین تعداد تکرارهای رگرسیونهای منطقی برای مسألههای ردههای رسمی، حداقل انحراف معیار خوشهها، و مقدار بیشینه رگرسیون را تعیین نمود. اگر ردهها رسمی باشد، میانگین K به طور جداگانه به هر رده اعمال میشود تا K خوشه مورد نظر برای هر رده استخراج گردد. 4-4. رده بندهای Lazy یادیگرندههای lazy نمونههای آموزشی را ذخیره میکنند و تا زمان رده بندی هیچ کار واقعی انجام نمیدهند. IB1 یک یادگیرنده ابتدایی بر پایه نمونه است که نزدیکترین نمونههای آموزشی به نمونههای آزمایشی داده شده را از نظر فاصله اقلیدسی پیدا کرده و نزدیکترین ردهای مشابه رده همان نمونههای آموزشی را تخمین میزند. IBK یک رده بند با K همسایه نزدیک است که معیار فاصله ذکر شده را استفاده میکند. تعداد نزدیکترین فاصلهها (پیش فرض 1= K ) میتواند به طور صریح در ویرایشگر شیء تعیف شود. پیشبینیهای متعلق به پیش از یک همسایه میتواند بر اساس فاصله آنها تا نمونههای آزمایشی، وزندار گردد. دو فرمول متفاوت برای تبدیل فاصله به وزن، پیاده سازی شدهاند. تعداد نمونههای آموزشی که به وسیله رده بند نگهداری میشود، میتواند با تنظیم گزینه اندازه پنجره محدود گردد. زمانی که نمونههای جدید اضافه میشوند، نمونههای قدیمی حذف شده تا تعداد کل نمونههای آموزشی در اندازه تعیین شده باقی بماند. Kstar ، یک روش نزدیکترین همسایه است که از تابع فاصلهای عمومی شده بر اساس تبدیلات استفاده میکند. LWL یک الگوریتم کلی برای یادگیری وزن دار شده به صورت محلی است. این الگوریتم با استفاده از یک روش بر پایه نمونه، وزنها را نسبت میدهد و از روی نمونههای وزندار شده، رده بند را میسازد. رده بند در ویرایشگر شیء LWL انتخاب میشود. Nave Bayes برای مسایل رده بندی و رگرسیون خطی برای مسایل رگرسیون، انتخابهای خوبی هستند. میتوان در این الگوریتم، تعداد همسایههای مورد استفاده را که پهنای باند هسته و شکل هسته مورد استفاده برای وزن دار کردن را (خطی، معکوس، یا گوسی) مشخص میکند، تعیین نمود. نرمال سازی ویژگیها به طور پیش فرض فعال است[ Data Mining, witten et Al. 2005 ].
[1] Visualization [2] Preprocessing [3] User friendly [4] Platform [5] Workbench [6] T ool kit [7] GNU General Public License [8] Personal Digital Assistant [9] Postprocessing [10] D iscretization [11] Relational [12] Interactive interface [13] Menu [14] Related attribute [15] Box [16] Command-line [17] Installer [18] Download [19] Panel [20] Tab [21] Tasks [22] Modify [23] Train [24] Aspect [25] Background task [26] Item [27] File format converter [28] Spreadsheet [29] Generic [30] Documentation [31] Serialized instances [32] Reloading [33] Native Java format [34] Parse [35] Source [36] Entry [37] R educed-error pruning [38] Not allowed [39] Greedily [40] Backward elimination [41] Median [42] Mean [43] K-means [44] Hidden layer |