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Abstract

The response of a Timoshenko beam with uniform cross-section and infinite length supported by a generalized

Pasternak-type viscoelastic foundation subjected to an arbitrary-distributed harmonic moving load is studied in this

paper. Governing equations are solved using complex Fourier transformation in conjunction with the residue and

convolution integral theorems. The solution is directed to compute the deflection, bending moment and shear force

distribution along the beam length. A parametric study is carried out for an elliptical load distribution and influences of

the load speed and frequency on the beam responses are investigated.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The dynamic response analysis of beams on viscoelasitc foundation under moving loads has been one of

the research interests of railway engineers especially in last decades. So far and during these years many

researchers have conducted different studies in this field. Fryba (1999) has presented some fundamentals in

the dynamics of structures under moving load. Many authors (Achenbach and Sun, 1965; Grassie, 1982;

Knothe and Grassie, 1993; Trochanis, 1987) have studied the steady state response of beams on a Kelvin

viscoelastic foundation under a concentrated harmonic-moving load. In this paper the response of a uni-

form Timoshenko beam of infinite length placed on a viscoelastic foundation and subjected to an arbitrary

distributed harmonic moving load is investigated. The speed and frequency of the moving load are assumed
to be constant.

The mechanical model considered for the foundation is a generalized Pasternak viscoelastic model. This

foundation model can be successfully used to simulate a newly-developed track support named ladder track

system in which longitudinal sleepers are held together by transverse steel pipes and laid in parallel pairs

under the rails (Mundrey, 2000). In this kind of viscoelastic model one set of parallel springs and dashpots
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restricts any vertical displacement and another set, prevents the system from rocking motion. Furthermore,

the existence of a shear viscous layer between beam and the foundation provides the interaction between

these viscoelastic elements.

The governing differential equations are derived using Hamilton principle and are solved using complex
Fourier transformation in conjunction with the residue and the convolution integral theorem. In per-

forming numerical integration the shape of the distributive load can be in any arbitrary type however, in

this paper it is assumed to be of the form of an elliptical function. The solution is directed to compute the

deflection, bending moment and shear force along the beam length. Also, in this paper, effects of velocity

and frequency variation of the load on the beam response are investigated.
2. Problem formulation

Fig. 1 illustrates a Timoshenko beam on a generalized Pasternak viscoelastic foundation under an

arbitrary distributed harmonic-moving load. By using Hamilton principle and employing the Timoshenko

beam theory, one can obtain the differential equations of the motion as (Kargarnovin and Younesian, 2001,

2002):
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in which A, E, G, I , k�, q, v, w, and / are, cross-sectional area of the beam, the modulus of elasticity, shear

modulus, cross-sectional moment of inertia, sectional shear coefficient, beam material density, load speed,

beam deflection and beam slope due to bending, respectively. Moreover, Q represents the magnitude of

distributed load, Pf and Mf are the foundation stimulated force and moment all per unit length of the beam

and can be calculated as
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owðx; tÞ
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þ l

o3wðx; tÞ
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Fig. 1. A Timoshenko beam on viscoelastic foundation under moving load.
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in which, k and c are foundation normal stiffness and damping coefficients, k/ and c/ are foundation

rocking stiffness and damping coefficients and l is the foundation shear viscosity coefficient.

In order to calculate the beam steady-state response, we use the following state variable transformation

as
wstðsÞ ¼ wðsÞeixt; wðsÞ ¼ wAðsÞeiwðsÞ ð5Þ
/stðsÞ ¼ /ðsÞeixt; /ðsÞ ¼ /AðsÞeihðsÞ ð6Þ
in which, s ¼ x� v � t, wAðsÞ and wðsÞ are amplitude and phase of the steady state deflection and /AðsÞ and
hðsÞ are amplitude and phase of the slope due to bending and x is the frequency of the moving load. After

utilizing the differentiation chain rule on Eqs. (1) and (2) and considering Eqs. (5) and (6), one can get
Qðx; tÞ ¼ QsðsÞ½Hðs� aÞ � Hðsþ aÞ�eixt ð7Þ
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It should be noted that the span of distributed moving load is 2a and H is the Heaviside function. Since the
beam length is considered to be infinite hence, the boundary conditions are
Limit
s!�1

wðsÞ ¼ Limit
s!�1

dwðsÞ
ds ¼ Limit

s!�1
d2wðsÞ
ds2 ¼ 0

Limit
s!�1

/ðsÞ ¼ Limit
s!�1

d/ðsÞ
ds ¼ 0

8><
>: ð10Þ
The above boundary conditions represent this fact that at points far enough from the point of load

application the central line deflection, its slope, concavity, shear force and bending moment are all

approaching to zero.
3. Method of solution

In this paper in order to compute the response of the beam due to a distributive moving load, first we use

the response of the beam under a concentrated moving load then compute the response of the beam to

distributive load by use of convolution theorem. In other words, first we assume that Qðx; tÞ is a unit Dirac

delta function ðdDÞ and compute the response of the beam using Fourier transformation. In this way we

have
Qðx; tÞ ¼ 1� dDðsÞeixt ð11Þ

Furthermore, we consider the complex Fourier transformation as
F ðqÞ ¼
Z þ1

�1
f ðsÞe�isq ds ð12Þ
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After implementing the Fourier transform on Eqs. (8) and (9) and imposing the boundary conditions

indicated in Eq. (10), WDðqÞ and UDðqÞ are obtained as
WDðqÞ ¼
�ðB1q2 þ B2qþ B3Þ

B4q5 þ B5q4 þ B6q3 þ B7q2 þ B8qþ B9

ð13Þ

UDðqÞ ¼
ðiB10qÞ

B4q5 þ B5q4 þ B6q3 þ B7q2 þ B8qþ B9

ð14Þ
It should be mentioned that WDðqÞ and UDðqÞ are Fourier transforms of wðsÞ and /ðsÞ, respectively.
Now, if an inverse Fourier transform is taken from both sides of Eqs. (13) and (14) then one will get
wDðs�Þ ¼
1

2pkr0
�
Z þ1

�1

�ðB1q2 þ B2qþ B3Þeis
�q
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dq ð16Þ
in which the coefficients B1 to B10 are
B1 ¼ ðd2 � b2Þ; B2 ¼ ðgdi� 2x�dÞ

B3 ¼ ðx�2 � a2 � c� igx�Þ; B4 ¼ �kdðd2 � b2Þi

B5 ¼ ðd2 � b2Þða2 � d2 þ ikx�Þ þ d2kðgþ 2x�iÞ

B6 ¼ ðd2 � b2Þð�dniþ 2dx�Þ þ ðdgi� 2x�dÞða2 � d2 þ ikx�Þ � kdiðx�2 � a2 � c� igx�Þ

B7 ¼ ðd2 � b2Þð1� x�2 þ inx�Þ þ ðgdi� 2x�dÞð�ndiþ 2x�dÞ þ a4 þ ðx�2 � a2 � c� igx�Þ
� ða2 � d2 þ ikx�Þ

B8 ¼ ðgdi� 2x�dÞð1� x�2 þ inx�Þ þ ðx�2 � a2 � c� igx�Þð�ndiþ 2x�dÞ

B9 ¼ ðx�2 � a2 � c� igx�Þð1� x�2 þ inx�Þ

B10 ¼ a2
The dimensionless groups of parameters appeared in above relations are
s� ¼ sr�1
0 ; a� ¼ ar�1

0 ; r0 ¼ I0:5A�0:5; a2 ¼ k�GA2k�1I�1

b2 ¼ EA2k�1I�1; k2 ¼ l2I�2Ak�1q�1; c ¼ k/Ak�1I�1

d2 ¼ v2A2qk�1I�1; n2 ¼ c2k�1A�1q�1; x� ¼ xk�0:5A0:5q0:5

g2 ¼ c2/I
�2Ak�1q�1
To calculate integrals of Eqs. (15) and (16) it is necessary to employ the residue theorem. In this way we

have for wDðs�Þ:
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and
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in which, zj represent the poles of wDðzÞ in the upper half, zk represent the poles of wDðzÞ in lower half part

of the complex plane and zjr represent the real poles of wDðzÞ. In order to calculate the residue in jth pole of

order mth one can use the following relation:
Res½WDðzÞeisz� ¼
1

ðm� 1Þ! limz!zj

dm�1

dzm�1
½ðz� zjÞmWDðzÞeisz� ð19Þ
The same way of integration can be used for calculation of /Dðs�Þ. Then in order to calculate the bending

moment and shear force, we can use following relations (Kargarnovin and Younesian, 2001, 2002):
MDðs�Þ ¼ r0b
2 d/Dðs�Þ

ds�
ð20Þ

VDðs�Þ ¼ a2 /Dðs�Þ
�

� dwDðs�Þ
ds�

�
ð21Þ
Now, we use convolution integral theorem for computation of the response of the beam to distributive
moving load. In this way we have:
wðs�Þ ¼ r0

Z þa�

�a�
Qs� ðuÞwDðs� � uÞdu ð22Þ

Mðs�Þ ¼ r0

Z þa�

�a�
Qs� ðuÞMDðs� � uÞdu ð23Þ

V ðs�Þ ¼ r0

Z þa�

�a�
Qs� ðuÞVDðs� � uÞdu ð24Þ
The above integrals cannot be computed easily and it is necessary to employ one of the appropriate

numerical methods of integration. In this paper, Gaussian quadrature method is employed.

It is important to mention that in the above-presented method of computation of the response of the
beam, any kind of mathematical function for Qs�ðuÞ in Eqs. (22)–(24) can be used.
4. Parametric study

In this paper, Qs� is taken to be an elliptical function. Note that elliptical function is one of the widely

used mathematical functions in the contact analysis. Therefore, the general form of Qs� would be
Qs� ðs�Þ ¼ Q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�2 � s�2

p
ð25Þ
The data for a standard track (Trochanis, 1987, 2000) is
a ¼ 50:4063; b ¼ 139:39; k ¼ 5:9410; n ¼ 0:2725
c ¼ 10:9025; g ¼ 2:9705; k ¼ 20 MPa; r0 ¼ 0:0677 m



Fig. 2. Velocity effect on the deflection distribution.
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We introduce two other new parameters namely D and X which are
D ¼ d
dcr

; X ¼ x�

x�
cr

ð26Þ
dcr and x�
cr are critical value of dimensionless speed and frequency in which Euler–Bernoulli beam on

Winkler foundation loses its stability (Fryba, 1999). For a track which is defined with above parameters dcr
and x�

cr are calculated and their values are 16.6967 and 1.0, respectively. In order to complete the required
values for different parameters we chose 5.0 and 14.46 kN/m for the a� and Q0, respectively in our simu-

lation.

By using above values for different parameters, the integration procedure is pursued and the distribution

of the displacement, bending moment and shear force along the beam length are calculated. Moreover, in

this paper effects of the load velocity and frequency on the beam response are investigated.

Figs. 2, 5 and 8 illustrate the variation of displacement, bending moment and shear force under velocity

change and Figs. 3, 6 and 9 represent the same variation but under frequency change. Also, in Figs. 4 and 7

variation of the maximum displacement and maximum bending moment by changing the value of load
velocity and frequency are shown.
5. Results

Making use of the theoretical analysis described in the previous sections and in order to assess the effects

of speed and frequency of the moving load on the amplitude of deflection, bending moment and shear force

distribution, a parametric study is conducted as following. The variation of the beam deflection by

changing of the load speed is illustrated in Fig. 2. It can be seen by increasing the speed of moving load,

primarily the maximum deflection increases and then decreases. Moreover, this will cause the position of

maximum deflection moves farther back with respect to the position of point ðs� ¼ 0Þ. Also, it can be seen
that the number of apparent local peaks increases with increasing the load speed.



Fig. 3. Frequency effect on the deflection distribution.

Fig. 4. Velocity and frequency effect on the maximum of deflection.
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The effect of load frequency on the beam deflection is shown in Fig. 3. This effect is similar to the effect of

speed increase on the beam deflection.

The effect of load frequency and speed on the maximum deflection is illustrated in Fig. 4. As it is seen in

this figure, for speeds less than critical speed ðD ¼ 1Þ, by increasing load frequency the maximum deflection

increases and after reaching to a maximum value it decreases. The frequency in which the peak of maximum

deflection is reached ðXpeakÞ, depends on the value of the load speed. By increasing the value of speed, the
difference of this frequency ðXpeakÞ, with the critical frequency ðX ¼ 1Þ will be broadened and the peak value



Fig. 5. Velocity effect on the bending moment distribution.

Fig. 6. Frequency effect on the bending moment distribution.
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of the maximum deflection primarily decreases and then increases. Now, for the load speeds equal to the
critical value, the maximum deflection decays by increasing the load frequency and for the speeds higher

than critical speed the maximum deflection primarily indicates a growing trend and it decreases afterward.

The effect of load speed on the bending moment distribution is illustrated in Fig. 5. Any increases in the

value of the load speed up to the critical value will cause the point of maximum bending moment moves to a

point in front of point ðs� ¼ 0Þ. In the same figure for the speeds more than critical speed, the point of



Fig. 7. Velocity and frequency effect on the maximum of bending.

Fig. 8. Velocity effect on the shear force distribution.
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maximum bending moment moves back and approaches again the to point ðs� ¼ 0Þ. In this case primarily
the value of maximum bending moment increases and then decreases.

The effect of load frequency on the bending moment distribution is shown in Fig. 6. Any increases in the

value of the load frequency have no effect on the location of the maximum bending moment. In this case

primarily the value of maximum bending moment increases and then decreases.



Fig. 9. Frequency effect on the shear force distribution.
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The effect of load frequency and speed on the maximum bending moment is illustrated in Fig. 7. As it is

seen in this figure, for speeds less than critical speed ðD ¼ 1Þ, by increasing the load frequency the maximum

bending moment increases and after reaching to a maximum value it decreases. The frequency in which the

peak of maximum bending moment is reached ðXpeakÞ, depends on the value of the load speed. By

increasing the value of speed, the difference of this frequency ðXpeakÞ, with the critical frequency ðX ¼ 1Þ will
be broadened and the peak value of the maximum bending moment increases up to critical speed. Now, for

the load speeds equal to the critical value, the maximum bending moment decays by increasing the load
frequency. Note that for the case ðD > 1Þ, the peak value of maximum bending moment primarily increases

(up to D ¼ 2:5) and then decreases.

The effect of load speed on the shear force distribution is illustrated in Fig. 8. Similar trend as discussed

for the bending moment can be seen in this figure. Also, it can be seen that the location of the peak value of

shear forces stays at the end of the load span.

The effect of load frequency on the shear force distribution is shown in Fig. 9. It can be seen that any

increases in the value of the load frequency have no effect on the location of the maximum shear force. Also,

in this case primarily the value of maximum shear force increases and then decreases.
6. Conclusions

In this paper, to simulate the rail vibration due to a moving train, the response of a uniform Timoshenko

beam of infinite length placed on a Pasternak viscoelastic foundation and subjected to a harmonic arbitrary

distributed moving load was studied.

The solution of equations of motion resulted in, the distribution of deflection, bending moment and

shear force along the beam length. Needless to say that these parameters are the most significant factors in

the design of rail and its foundation in view of stress analysis in the rail and foundation, passenger comfort
and noise generation. Since the presented results are in the non-dimensional form, they can be easily used in



M.H. Kargarnovin, D. Younesian / Mechanics Research Communications 31 (2004) 713–723 723
a wide rang of practical cases. Moreover, in this paper, effects of changing the load velocity and frequency

on the maximum values of beam responses were investigated. It was seen that variation of theses values vs.

the velocity is also similar to the frequency response and follows the same trend as frequency response of a 1

DOF system.
Furthermore, it was seen that for each velocity there is a critical frequency in which the maximum

deflection and bending moment are in their highest level. It should be mentioned that theses two critical

frequencies are independent of each other and variation of the maximum bending moment and deflection

vs. load frequency follow different trend. Also, it was demonstrated that unrelated to the level of load

frequency, for the case of critical speed ðD ¼ 1:0Þ, we will have the highest maximum bending moment

along the beam. In practical scene, it means that in the corrugated rails in which load velocity and fre-

quency are not independent, the critical bending moment arises in critical speed independent of the

wavelength of the corrugations. For the case of deflection, given a specified corrugation wavelength, the
critical velocity can easily be calculated using one of the illustrated figures in this paper (Fig. 4).
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