A harmonic balance approach for the analysis of flexible rotor bearing systems on non-linear support

Rezvani, M.A.
School of Railway Engineering, Iran University of Science and Technology, P.O. Box 16846-14114, Tehran, Iran

Abstract

The purpose of this article is to describe the theoretical background to the Harmonic Balance approach adopted and further developed for the analysis of general multiple degree of freedom rotor bearing systems with non-linear supports. System equations of motion are prepared for dynamic systems with any number of degrees of motion. Nonlinear behavior can be associated with any number of these freedoms. A computer program which uses the harmonic balance method to solve the system equations of motion is also written. These equations are partitioned into linear and nonlinear parts. The nonlinear sets of equations need to be solved prior to solving the linear sets of equations. Verification of the proposed method of solution is justified through two examples. The frequency response of a well known rotor bearing, the so-called Jeffcott rotor, is examined and tested against data reported by some other researchers. Also, the versatility of this method is tested by comparing the harmonic balance approach with the transient solution and some experimental measurements involving the nonlinear squeeze film bearing supports, which have already been reported by this author. It is shown that by utilizing harmonic balance with appropriate condensation, it is possible to considerably reduce the number of simultaneous nonlinear equations inherent to such systems. The stability (linear) of the equilibrium solutions may be conveniently evaluated using the Floquet theory.

Language of original document

English

Author keywords

Flexible rotor bearing systems; Floquet theory; Harmonic balance approach; Non-linear dynamics; Squeeze film bearings

Index Keywords

Flexible rotor bearing system; Floquet theory; Harmonic balance approach; Non-linear dynamics; Squeeze Films
Engineering controlled terms: Bearing pads; Bearings (structural); Dynamical systems; Equations of motion; Frequency response; Harmonic analysis; Mechanics
Engineering main heading: Nonlinear equations
GEOMETRY Subject Index: analytical method; equilibrium; harmonic analysis; mathematical theory; nonlinearity; software

References (16) View in table layout